ロングイアビン・オーロラスペクトログラフによるオーロラ・大気光の長期分光観測

*小川泰信¹、宮岡宏¹、坂野井健²、鈴木臣³、門倉昭¹、田口真⁴

1 国立極地研究所、² 東北大学

3 名古屋大学太陽地球環境研究所、⁴ 立教大学

Long-term spectral observations of aurora and airglow in Longyearbyen, Svalbard

*Yasunobu Ogawa¹, Hiroshi Miyaoka¹, Takeshi Sakanoi², Shin Suzuki³, Akira Kadokura¹, and Makoto Taguchi⁴

¹National Institute of Polar Research, Japan ²Tohoku University, Japan

³Solar-Terrestrial Environment Laboratory, Nagoya University, Japan ⁴Rikkyo University, Japan

Auroral/airglow spectrograph observations in Longyearbyen Svalbard have been conducted since October 2000. The auroral spectrograph consists of a large fish-eye lens, a slit which passes the light from the sky along geomagnetic meridian direction, a grism with 600 gr/mm, and a cooled CCD camera. The spectrograph covers a wavelength of about 420-760 nm with spectral bandwidth of 1.5-2.0 nm. In this paper, we give an overview of the spectral observations, and also show current status of their database and some results of auroral intensity at each wavelength over 1 solar cycle.

2000 年 10 月にスバールバル諸島ロングイヤビンで観測を開始したオーロラスペクトログラフは、観測波長範囲の変更や、旧光学ステーションから Kjell Henriksen Observatory (KHO) への設置場所の移設(2009 年 12 月)等を経つつ、約 13 年間の観測を継続してきた。このオーロラスペクトログラフは、魚眼レンズ(f=6~mm、F1.4)とスリット(幅 $42~\mu m$ 、長さ 20~mm)、グリズム(600~a~mm)、冷却 CCD カメラ等によって構成されており、約420-760 nm の波長範囲を分解能 1.5-2 nm で、磁気子午面に沿った 180~g の視野角の観測が可能である(Taguchi et al., 2002)。通常は $2~\beta$ 間の時間分解能で観測している。2000 年から 2005~f 年までは、波長 732/733~f nm の 0~f 発光現象の研究を行うための分光観測が主に行われた(Koizumi et al., 2004)。それ以降には、れいめい衛星との共同観測のために、428~nm の窒素分子イオン発光を含む波長域の観測を実施している。本発表では、これらの分光観測の概要を述べると共に、太陽活動 1~g 周期分に渡って蓄積された分光データのデータベース化の状況や、各波長のオーロラ発光強度(絶対値)の年変化等に関する解析結果を紹介する。

Table 1. Summary of the auroral spectrograph observations in Longyearbyen, Svalbard.

Start year & month	End year & month	Number of images	Wavelength (nm)
2000-10	2001-02	39000	450-760
2001-10	2002-03	33000	450-760
2003-01	2003-03	21000	425-735
2004-01	2004-03	22000	450-760
2004-12	-	2000	450-760
2005-11	2005-12	8000	450-760
2007-12	2008-03	17000	420-730
2008-11	=	4000	420-730
2009-12	2010-03	46000	430-740
2010-10	2011-03	81000	420-730
2011-10	2012-03	78000	420-730
2012-10	2013-03	99000	420-730

参照 HP

http://polaris.nipr.ac.jp/~eiscat/optical/lyr.html

References

Taguchi et al., A new meridian imaging spectrogarph for the auroral spectroscopy, *Advances in Polar Upper Atmosphere Research*, 16, 99-110, 2002.

Koizumi et al., Auroral O⁺732/733 nm emission and its relation to ion upflow, *Advances in Polar Upper Atmosphere Research*, 18, 96-104, 2004.