表面質量収支モデルおよび初期化方法に対する グリーンランド温暖化応答の感度実験

齋藤冬樹¹、阿部彩子^{2,1}、高橋邦生¹

¹ 独立行政法人海洋研究開発機構 ² 東京大学大気海洋研究所

Sensitivity of Response of Greenland Ice Sheet to Global Warming on Surface Mass Balance and Initialization methods

SAITO Fuyuki¹, Ayako ABE-OUCHI^{2,1} and Kunio TAKAHASHI¹

¹ Japan Agency for Marine-Earth Science and Technology ² Atmosphere Ocean Research Institute, University of Tokyo

We present a series of numerical experiments of Greenland ice sheet under global warming condition using Ice sheet model for Integrated Earth system Studies ($I_{C}IES$). In this study, influence on the simulation from the difference in the method to compute the surface mass balance is focused. Typically, ice sheet simulation is driven by a *reference-anomaly* method, in which the surface temperature and/or the accumulation are decomposed into the reference terms (e.g., observation), the anomaly (e.g., climate scenario from climate models). Then the surface melting is computed using parameterization such as positive degree-day (PDD) method with the temperature. These decomposed terms have own uncertainties, which may influence the ice-sheet simulation. In this study, impact of these properties to the present-day control case, as well as the response under uniform warming condition are discussed, which is thought be a useful and basic information of the property/sensitivity of the Greenland ice sheet.

In addition, several initialization methods (free spin-up, fixed-topography spin-up, etc) are applied to $I_{C}IES$ in order to evaluate the influence of the error in the present-day simulated topography to the short-term response of Greenland ice sheet.

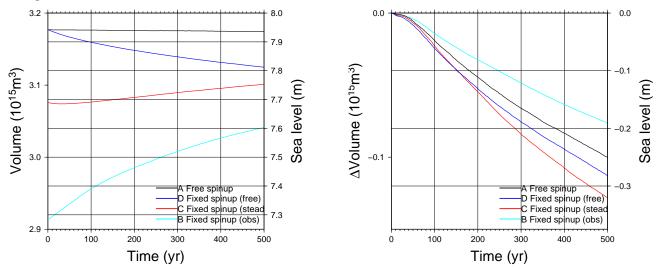


Fig. 1. Time series of simulated ice-sheet volume un-Fig. 2. Time series der control climate under a global warm

Fig. 2. Time series of simulated ice-sheet volume under a global warming scenario relative to the control climate. Climate forcing scenario as well as other boundary conditions follow SeaRISE configuration (Bindschadler et al., 2013).