地上と衛星観測による周北極域の植生フェノロジーの時空間分布の変動の検出

永井信¹、小林秀樹¹、中井太郎²、杉浦幸之助^{1,3}、鄭俊介⁴、金龍元⁵、鈴木力英¹
¹海洋研究開発機構・地球環境変動領域
²名古屋大学・地球水循環研究センター
³富山大学・極東地域研究センター
⁴北海道大学・大学院地球環境科学研究院
⁵アラスカ大学・国際北極圏研究センター

Detection of spatio-temporal variability of plant phenology around the arctic region by *in site* and satellite observations

Shin Nagai¹, Hideki Kobayashi¹, Taro Nakai², Konosuke Sugiura^{1, 3}, Shunsuke Tei⁴, Yongwon Kim⁵ and Rikie Suzuki¹

¹Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology

²Hydrospheric Atmospheric Research Center, Nagoya University
³Center for Far Eastern Studies, University of Toyama
⁴Faculty of Environmental Earth Science, Hokkaido University
⁵International Arctic Research Center, University of Alaska Fairbanks

To accurately evaluate the ecosystem function (e.g., photosynthesis, evapotranspiration) and service (e.g., carbon stock, control of climate) under rapid meteorological and climate changes around the arctic region, we require long-term continuous phenological observations with a high temporal resolution (i.e., daily) from plot to continental scales. Here, (1) we performed daily phenological observations with time-lapse digital cameras in evergreen needleleaf forest in Alaska and deciduous needleleaf forest in Siberia; (2) we detected year-to-year variations in the leaf-expansion and leaf-fall phenology of understory vegetation in Alaska by image analysis; and (3) we examined the spatio-temporal variability of the timings of start of leaf-expansion (SLE) and end of leaf-fall (ELF) around the arctic region by using daily and/or 8–10 days composite satellite-observed vegetation indices (i.e., normalized difference vegetation index; NDVI, enhanced vegetation index; EVI, green-red vegetation index; GRVI). We found that (1) seasonal patterns of the red, green, and blue digital numbers extracted from the time-lapse digital camera images could accurately detect the characteristics of spatio-temporal variability of timings of SLE and ELF in a plot scale; (2) large year-to-year variability of timing of SLE was detected in eastern Siberia and western Ural Mountains; and (3) the timing of SLE in Alaska gradually advanced (about 7.1 days decade⁻¹) during 1998 and 2011 (Fig. 1).

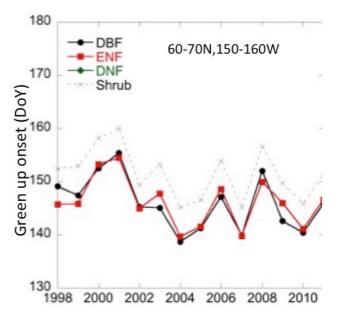


Fig. 1 Year-to-year variability of the timing of start of leaf-expansion (green up onset) in interior Alaska. DoY: day of year. DBF: deciduous broad-leaved forest. ENF: evergreen needleleaf forest. DNF: deciduous needleleaf forest.