南極昭和基地における中層大気微量分子のミリ波帯観測

前澤裕之¹、水野亮¹、磯野靖子¹、長濱智生¹、桑原利尚¹、児島康介¹、児島康介¹、 中村卓司²、堤雅基²、江尻省²、冨川喜弘²、山岸久雄²、ほか極地研宙空圏グループ² ¹名古屋大学 太陽地球環境研究所 ²極地研究所

Millimeter-wave Bnad Observations of Minor Constituents in the Middle Atmosphere at Syowa Station

Hiroyuki Maezawa¹, Akira Mizuno¹, Yasuko Isono¹, Tomoo Nagahama¹, Toshihisa Kuwahara¹, Yasusuke Kojima¹, Takuji Nakamura², Masaki Tsutsumi², Mitsumu Ejiri², Yoshihiro Tomikawa², Hisao Yamagishi², and Space and Upper Atmospheric Science Group²

¹Solar Terrestrial Environment Lab., Nagoya University ²National Institute of Polar Reaearch

In order to study the chemical and dynamical effects of energetic particle precipitation (EPP) on minor constituents in the upper and middle atmosphere, we are planning to make a continuous monitoring of vertical profiles of NO₂, HO₂, and Ozone by using a millimeter-wave spectroscopic radiometer from Syowa station. We will continue the monitoring for 5 years since 2011 in order to cover the next solar maximum. Two different types of the EPP effects are expected to be observed from Syowa station. One is "direct" effect that energetic solar protons enter directly into the mesosphere and make in-situ ionization of nitrogen and oxygen molecules leading to enhancement of NOx /HOx and depletion of ozone caused by the NOx /HOx enhancement (e.g., Jackman et al. 2001, 2005). The other is "indirect" effect that NOx is enhanced in the thermosphere through ionization of N₂ by auroral electrons and then the enhanced NOx air flows downward to the mesosphere and the upper stratosphere with the descending polar vortex (e.g., Seppala et al. 2007).

Our remote sensing spectroscopy does not need a background source like the Sun; thus, we can proceed with long-term and continuous monitoring of minor constituents such as ozone and NOx species in the polar neutral middle atmosphere even during polar night. The millimeter-wave band radiometer is sensitive to the mesosphere up to \sim 70km, and thus, gives the most suitable observation methods from the ground to study the above phenomena. We chose 250GHz-band in which relatively stronger lines of these molecules exist. The NO₂ line intensity is extremely weak, \sim a few tens mK in antenna temperature but is expected to be enhanced by more than 100 times and a few tens times than normal intensity for direct and indirect effects, respectively. Based on our model calculation, our superconductive radiometer can detect such an enhancement enough by several hours or one-day integration. Thus, we started development a new 250GHz-band millimeter-wave spectroscopic radiometer in collaboration with the Space and Upper Atmospheric Science group of NIPR in 2008.

Recently we redesigned the quasi-optical system of the radiometer with GRAP 9 software, so that the expected performance in the characteristics of beam propagation was obtained. In addition we developed heterodyne the mixer detectors employing superconductor-insulator-superconductor (SIS) junctions at the clean room of the Advanced Technology Center of the National Astronomical Observatory of Japan. The receiver noise temperature is about 60 K. This quantum-limited sensitivity will allow us to observe the faint spectral lines of NOx species reliably at the site. Finally the radiometer system was tested by demonstrating the gas cell observations of N₂O lines at our laboratory. The completed system were already taken apart, and then loaded onto the Shirase. In this talk we will present the progress and current status.

The millimeter-wave band radiometer.

Performance of the 250 GHz band superconducting SIS mixer receiver newly developed for this mission.