南極定着氷表面から大気への硫化ジメチルの放出について

野村大樹¹, 古賀聖治², 笠松伸江³, 品川秀夫⁴, 清水大輔⁵, 和田誠¹, 福地光男¹

1 極地研, 2 產総研, 3 海洋大, 4 筑波大, 5 北大低温研

DMS emission from Antarctic fast ice surface to the atmosphere

Daiki Nomura¹, Seizi koga², Nobue Kasamatsu³, Hideo Shinagawa⁴, Daisuke Simizu⁵, Makoto Wada¹, Mitsuo Fukuchi¹

¹NIPR, ²AIST, ³Tokyo University of Marine Science and Technology, ⁴University of Tsukuba, ⁵ILTS

In general, dimethylsulfide (DMS) emissions from sea ice to the atmosphere are disregarded when estimating the global sulfur budget because sea ice is assumed to suppress gas exchange through the air–water interface. Recently, however, gas exchange of CO_2 through sea ice has been demonstrated. Thus, it is important to consider its contributions to chemical component budgets in the polar oceans. Here, we present the first direct measurements obtained using a chamber technique of DMS emissions from the surface of sea ice to the atmosphere during seasonal warming conditions over Antarctic sea ice. DMS fluxes were estimated to be from 0.1 to 5.3 μ mol m⁻² day⁻¹. DMS concentrations in slush water ranged from 1.2 to 121.8 nM. DMS fluxes increased with increasing DMS concentrations in slush water. Our results indicate that the sea-ice slush layer is both a DMS source and storage region for the atmosphere, although snow accumulation and the formation of superimposed ice (ice formed by the freezing of snow meltwater) over the sea ice partially blocks the diffusion of DMS. DMS emitted from the sea-ice surface may account for an important fraction of the global sulfur budget.