亜硝酸還元酵素遺伝子から推察される南檑コケ坊主内の脱窒細菌

中井亮佑 ${ }^{1,2}$ ，長沼毅 ${ }^{1}$ ，鹿児島浩 ${ }^{3}$ ，仁木宏典 ${ }^{3}$ ，小原雄治 ${ }^{3}$ ，伊村智 ${ }^{4}$ ，神田啓史 ${ }^{4}$ ，柳原克彦 ${ }^{5}$ ，馬場知哉 ${ }^{5}$ ，阿部貴志 ${ }^{6}$
${ }^{1}$ 広島大学
${ }^{2}$ 日本学術振興会特別研究員
${ }^{3}$ 国立遺伝学研究所 ${ }^{4}$ 国立極地研究所
${ }^{5}$ 新領域融合研究センター ${ }^{6}$ 長浜バイオ大学

Denitrifiers of an Antarctic moss pillar inferred from nitrite reductase gene

Ryosuke Nakai ${ }^{1,2}$ ，Takeshi Naganuma ${ }^{1}$ ，Hiroshi Kagoshima ${ }^{3}$ ，Hironori Niki ${ }^{3}$ ，Yuji Kohara ${ }^{3}$ ， Satoshi Imura ${ }^{4}$ ，Hiroshi Kanda ${ }^{4}$ ，Katsuhiko Yanagihara ${ }^{5}$ ，Tomoya Baba ${ }^{5}$ ，Takashi Abe ${ }^{6}$
${ }^{1}$ Hiroshima University
${ }^{2}$ JSPS Research Fellow
${ }^{3}$ National Institute of Genetics
${ }^{4}$ National Institute of Polar Research
${ }^{5}$ Transdisciplinary Research Integration Center
${ }^{6}$ Nagahama Institute of Bio－Science and Technology

Aquatic mosses in Antarctic lakes form unique tower－like vegetation known as＂moss pillars＂．Moss pillars have distinct redox－ affected sections，i．e．，aerobic exterior and anaerobic interior．We have proposed that a＂pillar＂is a community－and－habitat of functionally interdependent organisms and may represent a mini－biosphere．Batteries of SSU rRNA phylotypes of eukaryotes， eubacteria and cyanobacteria，but no archaea，have been identified in moss pillars．Some phylotypes showed pillar－wide distributions， while others were section－specific．However，phylotypic information provides only limited information about metabolic capabilities． Therefore，occurrence and diversity of the nitrite reductase（nirK）gene in a moss pillar was analyzed as the nitrite reductase enzyme catalyzes nitrite reduction，i．e．，a key step in denitrification．Homology searches showed that α－proteobacterial nirK sequences dominated the moss pillar libraries and these sequences were closely related to the nirK gene of culturable denitrifiers of the genera Mesorhizobium，Bradyrhizobium，and Phaeobacter．Therefore，occurrence of α－proteobacterial nirKs may contribute to denitrification near the oxic／anoxic interface in the moss pillar．The functional gene－based profiles suggest that nitrite reduction by α－proteobacteria is likely an important part in nitrogen cycle of a bryosphere．

