亜硝酸還元酵素遺伝子から推察される南極コケ坊主内の脱窒細菌

中井亮佑^{1,2}、長沼毅¹、鹿児島浩³、仁木宏典³、小原雄治³、 伊村智⁴、神田啓史⁴、柳原克彦⁵、馬場知哉⁵、阿部貴志⁶ ¹広島大学 ²日本学術振興会特別研究員 ³国立遺伝学研究所 ⁴国立極地研究所 ⁵新領域融合研究センター ⁶長浜バイオ大学

Denitrifiers of an Antarctic moss pillar inferred from nitrite reductase gene

Ryosuke Nakai^{1, 2}, Takeshi Naganuma¹, Hiroshi Kagoshima³, Hironori Niki³, Yuji Kohara³, Satoshi Imura⁴, Hiroshi Kanda⁴, Katsuhiko Yanagihara⁵, Tomoya Baba⁵, Takashi Abe⁶ ¹Hiroshima University ²JSPS Research Fellow ³National Institute of Genetics ⁴National Institute of Polar Research ⁵Transdisciplinary Research Integration Center ⁶Nagahama Institute of Bio-Science and Technology

Aquatic mosses in Antarctic lakes form unique tower-like vegetation known as "moss pillars". Moss pillars have distinct redoxaffected sections, i.e., aerobic exterior and anaerobic interior. We have proposed that a "pillar" is a community-and-habitat of functionally interdependent organisms and may represent a mini-biosphere. Batteries of SSU rRNA phylotypes of eukaryotes, eubacteria and cyanobacteria, but no archaea, have been identified in moss pillars. Some phylotypes showed pillar-wide distributions, while others were section-specific. However, phylotypic information provides only limited information about metabolic capabilities. Therefore, occurrence and diversity of the nitrite reductase (*nirK*) gene in a moss pillar was analyzed as the nitrite reductase enzyme catalyzes nitrite reduction, i.e., a key step in denitrification. Homology searches showed that α -proteobacterial *nirK* sequences dominated the moss pillar libraries and these sequences were closely related to the *nirK* gene of culturable denitrifiers of the genera *Mesorhizobium, Bradyrhizobium*, and *Phaeobacter*. Therefore, occurrence of α -proteobacterial nirKs may contribute to denitrification near the oxic/anoxic interface in the moss pillar. The functional gene-based profiles suggest that nitrite reduction by α -proteobacteria is likely an important part in nitrogen cycle of a *bryosphere*.