⁴⁰Ar-³⁹Ar AGES OF L AND LL CHONDRITES FROM ALLAN HILLS, ANTARCTICA: ALHA77015, 77214 AND 77304

Ichiro Kaneoka

Geophysical Institute, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113

Abstract: ⁴⁰Ar-³⁹Ar ages have been determined for three chondrites (ALHA 77015, 77214, 77304) from Allan Hills, Antarctica.

Although younger ages have been observed at lower and higher temperatures for ALHA77015 (L3), the intermediate plateau-like age indicates a value of $4514 \pm 48(1\sigma)$ Ma, though the plateau range is relatively narrow about 27% of the total ³⁹Ar.

ALHA77304 (LL3) shows a typical plateau age of 4503 ± 52 Ma at higher temperatures, covering about 46% of the total ³⁹Ar.

Seriously weathered ALHA77214 (L or LL) exhibits a typical stair-case age pattern, increasing from about 1600 Ma up to about 4450 Ma.

When coupled with reported data on other chondrites, there may be a rough correlation between the ${}^{40}Ar - {}^{39}Ar$ age and the degree of metamorphism defined from their petrologic type for unshocked L chondrites. However, such a trend is not clear for H and LL chondrites and a more systematic survey is required to settle the problem.

1. Introduction

Following the classification of chondrites by VAN SCHMUS and WOOD (1967), several attempts have been made to find other characteristics related to petrologic type (*e.g.* ZÄHRINGER, 1966). Most ordinary chondrites are relatively equilibrated (petrologic types 5 and 6); the unequilibrated ones (petrologic type 3) are less abundant. If the petrologic grade reflects thermal history of the parent body, it may also be paralleled by the age. Since a total gas retention age reflects only an averaged value corresponding to several secondary disturbances, it is not an appropriate way to address the problem. Rb-Sr, Pb-Pb and Sm-Nd methods are applicable, but each systematics may not always behave in the same manner, reflecting the different diffusivity of each element at moderate temperature. In this respect, Ar is expected to be more sensitive to thermal effects than the solid elements like Sr, Pb and Nd. Hence, the ⁴⁰Ar-³⁹Ar method is considered to be suitable to monitor the relationships between petrologic type and age of chondrites.

So far, a number of investigators have reported ⁴⁰Ar-³⁹Ar ages for ordinary chondrites (*e.g.* TURNER, 1968, 1969; PODOSEK, 1971, 1972; BOGARD *et al.*, 1976;

TURNER *et al.*, 1978). Among them, however, only unshocked chondrites are suitable for the present purpose, because it is known that the main shock probably occurred long after the formation of chondrites (*e.g.* BOGARD *et al.*, 1976). If we limit consideration to the unshocked chondrites, the number of chondrites where 40 Ar- 39 Ar ages are reported does not exceed 30. Among them, to my knowledge Tieschitz (H3) is the only sample which belongs to the least equilibrated petrologic type 3 (TURNER *et al.*, 1978). Hence, more data are required on the 40 Ar- 39 Ar age of unequilibrated chondrites.

Among meteorites recovered from Antarctica, many unequilibrated chondrites (petrologic type 3) are found. One L3 and one LL3 chondrite were selected for ${}^{40}Ar - {}^{39}Ar$ analyses to study the problem mentioned above. One weathered chondrite was also studied to check the effect of weathering on the age spectrum.

2. Samples

Two unequilibrated ordinary chondrites, ALHA77015 (L3) and ALHA77304 (LL3), were selected to investigated whether they retain a relatively primitive record in the ages. Both were among the least weathered meteorites found in Allan Hills, Antarctica. ALHA77214 (L or LL) is, however, seriously weathered and has a rusty surface; it was analyzed to examine the effect of such weathering on its age spectrum.

These meteorites were prepared as blocks ranging from about a few mm to less than 9 mm in size. The blocks with fusion clasts were removed from samples for analysis. However, they were not powdered in order to avoid Ar loss and/or atmospheric contamination during the procedure.

3. Experimental Procedures

Since most of the experimental procedures are similar to those reported in a previous paper (KANEOKA *et al.*, 1979), only the essential and modified parts are described here.

Each sample (about 0.6–0.9 g) was wrapped in Al-foil and stacked in a quartz ampoule ($10 \text{ mm} \times 70 \text{ mm}$) paired with two standard samples, one at each side. Remelted CaF₂ and K₂SO₄ were also included to monitor Ca- and K-derived interference correction factors. The standard sample MMhb-1 (hornblende, K-Ar age: 519.5±2.5 Ma) (ALEXANDER *et al.*, 1978) was used as the age monitor.

Samples were irradiated in the JMTR reactor of the Tohoku University receiving total fast neutron fluence of about 10¹⁸ nvt/cm². After cooling for about one month, Ar was extracted in a conventional extraction and purification system. Samples were dropped from a sample holding arm into a Mo crucible by pushing an iron piece with a hand magnet. Each temperature was kept for 45 min and then the next step taken without cooling between steps. Blanks were taken before each sample analysis. Since the extraction and purification system is separated from the mass spectrometer, this may not directly correspond to a conventional blank. However, I believe that the application of this blank correction together with the background correction in the mass spectrometer and sample introduction system will approximate the true value of sample gases much better than no correction. Hence, the corrections mentioned above were applied for all present data. Blank has almost atmospheric Ar composition, but the Ar peaks ranging from m/e=37 to 40 appear as memories of the previous analyses in the background of the mass spectrometer. Blank levels are $(2-3) \times 10^{-8}$ ccSTP ⁴⁰Ar below 1300°C, but increase up to $(1-3) \times 10^{-7}$ ccSTP at the highest temperature (~1650°C) for 45 min.

Ar isotopes were analyzed on a Reynolds type mass spectrometer with a Farady cage. The amounts of Ar were estimated from the sensitivity of the mass spectrometer deduced from the amount of radiogenic ⁴⁰Ar in the standard sample. About 30% uncertainty is assigned on the basis of reproducibility. Mass discrimination among Ar isotopes were estimated to be 0.44% per atomic mass unit favoring heavier isotopes by measuring atmospheric Ar. The following correction factors were used for Ca- and K-derived interference, as determined by analysis of the CaF₂ and K_2SO_4 :

 $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{Ca} = (11.6 \pm 0.8) \times 10^{-4}, ({}^{38}\text{Ar}/{}^{37}\text{Ar})_{Ca} = (3.3 \pm 0.04) \times 10^{-3}, ({}^{36}\text{Ar}/{}^{37}\text{Ar})_{Ca} = (2.1 \pm 1.6) \times 10^{-4}, ({}^{40}\text{Ar}/{}^{39}\text{Ar})_{K} = (8.1 \pm 1.0) \times 10^{-2}, \text{and} ({}^{38}\text{Ar}/{}^{39}\text{Ar})_{K} = (6.1 \pm 0.03) \times 10^{-2}.$

The amounts of trapped and spallogenic components were calculated by assuming that the ³⁸Ar/³⁶Ar ratios for trapped and spallogenic components are 0.187 and 1.5, respectively. ⁴⁰Ar is corrected for trapped (⁴⁰Ar/³⁶Ar=0.5) and spallogenic (⁴⁰Ar/³⁸Ar=0.15) components. When the ³⁸Ar/³⁶Ar ratio exceeds 1.5, the excess ³⁸Ar is presumed due to ³⁷Cl ($n, \gamma\beta$) ³⁸Ar, and the remainder spallogenic. However, this assumption seems to be not always appropriate, as discussed later. Cl-derived ³⁸Ar can be present even if the ³⁸Ar/³⁶Ar does not exceed 1.5 and we cannot exclude this possibility for the present samples. Hence, no exposure ages are reported in this paper.

4. Results

The observed Ar isotopic ratios and the amount of 40 Ar for each temperature fraction are shown in Table 1. Blank and background in the mass spectrometer plus gas introduction system were subtracted. The radioactive decay of 87 Ar between irradiation and analysis was also corrected, but the data except to the 40 Ar*/ 39 Ar* ratio represent those before other corrections were applied. All contributions other than the decay of 40 K or 39 K (*n*, *p*) 39 Ar were corrected to obtain 40 Ar*/ 39 Ar* ratios,

T(°C)	$\times 10^{-8} \text{ ccSTP/g}$	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)
700	571	$\begin{array}{r}17.36\\\pm 0.71\end{array}$	$\begin{array}{r}12.46\\\pm 0.39\end{array}$	$\begin{array}{r}9.097\\\pm 0.257\end{array}$	5.763 ±0.194	1739 ± 59	3575 ± 55
800	609	$\begin{array}{r}10.80\\\pm 0.16\end{array}$	$\begin{array}{r}9.873\\\pm 0.064\end{array}$	$\overset{27.83}{\pm 0.23}$	4.277 ±0.263	2344 ±144	4048 ±100
900	383	$\begin{array}{r} 18.08 \\ \pm 0.21 \end{array}$	$\begin{array}{r} 8.709 \\ \pm \ 0.094 \end{array}$	$\substack{13.26\\\pm\ 0.27}$	3.169 ±0.166	3163 ±166	$\begin{array}{r} 4539 \\ \pm 88 \end{array}$
1000	377	$\begin{array}{c}101.4\\\pm1.2\end{array}$	$\substack{14.98\\\pm 0.46}$	$\begin{array}{c} 27.53 \\ \pm \ 0.29 \end{array}$	3.266 ±0.160	3062 ±150	4485 ± 83
1100	209	$\begin{array}{r} 357.9 \\ \pm 9.8 \end{array}$	$\begin{array}{r} 22.74 \\ \pm \ 0.80 \end{array}$	$\begin{array}{r} 75.58 \\ \pm 1.81 \end{array}$	$\begin{array}{c} 3.178 \\ \pm 0.225 \end{array}$	3115 ±220	4514 ±118
1200	235	$\begin{array}{r} 671.1 \\ \pm 18.1 \end{array}$	$\begin{array}{r} 37.25 \\ \pm 1.29 \end{array}$	$\begin{array}{c}137.7\\\pm\ 2.8\end{array}$	3.126 ±0.125	3136 ±125	$\begin{array}{r} 4524 \\ \pm 68 \end{array}$
1300	372	744.3 ± 12.9	$\begin{array}{r} 66.57 \\ \pm 1.39 \end{array}$	140.6 + 2.3	4.687 ±0.198	2089 ± 88	3864 <u>+</u> 69
1450	642	$\substack{450.3\\\pm 9.0}$	$\substack{116.8\\\pm 1.6}$	87.90 ± 2.22	$\begin{array}{r} 4.236 \\ \pm 0.305 \end{array}$	2383 ±172	4075 ±118
1650	40.1	570.7 ±145.6	206.6 ±54.3	$\begin{array}{c}111.0\\\pm28.4\end{array}$	7.462 ±2.294	$\begin{array}{c} 1345 \\ \pm 413 \end{array}$	3183 ±459
Total	3438.1	256.8	41.79	57.85	4.218	2368	4065

Table 1. Ar isotopes in neutron-irradiated meteorites from Allan Hills, Antarctica. ALHA77015 (L 3) 0.8879 g, $J=0.003597\pm0.000035$

ALHA77304 (LL 3) 0.9442 g, J=0.003515 ±0.000034

T(°C)	$ \begin{vmatrix} [^{40} Ar] \\ \times 10^{-8} ccSTP/g \end{vmatrix} $	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	$^{37}Ar/^{40}Ar$ (×10 ⁻⁴)	$^{38} m Ar/^{40} m Ar$ (×10 ⁻⁴)	39 Ar/ 40 Ar (×10 ⁻⁴)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)
700	51.4	41.43 ± 3.00	86.81 <u>+</u> 7.54	69.93 <u>+</u> 4.99	76.05 ±6.02	131.5 ± 10.4	685.5 ± 45.4
800	232	$\begin{array}{r} 36.63 \\ \pm 0.56 \end{array}$	$\begin{array}{r} 36.75 \\ \pm \end{array}$	$\begin{array}{r} 27.66 \\ \pm 0.54 \end{array}$	$\begin{array}{c} 20.23 \\ \pm 0.86 \end{array}$	$\begin{array}{r} 494.6 \\ \pm 21.0 \end{array}$	1817 ± 50
900	—	_	—	—	-	_	_
1000	265	$\begin{array}{r}31.28\\\pm 0.55\end{array}$	$\begin{array}{r} 20.29 \\ \pm \ 0.44 \end{array}$	$\substack{14.65\\\pm\ 0.35}$	$\begin{array}{r} 3.713 \\ \pm 0.321 \end{array}$	$\begin{array}{c} 2708 \\ \pm 234 \end{array}$	4245 ±142
1100	345	$\begin{array}{r}15.71\\\pm 0.29\end{array}$	$\begin{array}{r} 32.94 \\ \pm \ 0.61 \end{array}$	11.49 ± 0.40	3.191 ±0.217	3170 + 216	4504 ±114
1200	956	$\begin{array}{c} 7.208\\ \pm 0.089\end{array}$	$\begin{array}{r} 19.37 \\ \pm \ 0.31 \end{array}$	5.099 <u>+</u> 0.086	3.166 <u>+</u> 0.171	3179 ±176	4509 <u>+</u> 93
1300	413	$\begin{array}{r}15.89\\\pm 0.25\end{array}$	$\begin{array}{r}51.72\\\pm 0.96\end{array}$	$\substack{13.37\\\pm\ 0.33}$	$\begin{array}{c} 3.150 \\ \pm 0.170 \end{array}$	3235 ±173	4538 ± 90
1450	697	$\begin{array}{r} 34.48 \\ \pm 0.98 \end{array}$	$\begin{array}{r}91.29\\\pm\end{array}$	$\substack{18.95\\\pm\ 0.64}$	3.258 ±0.137	3166 <u>+</u> 141	4502 ± 75
1650	792	$\begin{array}{c} 25.98 \\ \pm \end{array}$	$\overset{36.61}{\pm 0.82}$	7.407 ± 0.274	3.255 士0.281	3107 ±268	4471 ±143
Total	> 3751.4	21.97	43.25	12.62	5.297	1904	3680

T(°C)	$\frac{[^{40}\text{Ar}]}{\times10^{-8}\text{ccSTP/g}}$	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	40Ar*/80Ar*	Age (Ma)
700	140	$\begin{array}{r} 35.38 \\ \pm 1.76 \end{array}$	19.04 -± 1.10	$\begin{array}{r} 41.49 \\ \pm 2.04 \end{array}$	$\begin{array}{c} 23.68 \\ \pm 3.38 \end{array}$	$\begin{array}{r}422.0\\\pm \ 60.2\end{array}$	1617 <u>+</u> 153
800	858	$\begin{array}{c} 8.531 \\ \pm 0.212 \end{array}$	$\substack{11.11\\\pm\ 0.28}$	$\begin{array}{c} 21.17 \\ \pm \end{array}$	$\begin{array}{c}10.32\\\pm0.50\end{array}$	$969.9 \\ \pm 47.9$	2645 ± 76
900	634	$\begin{array}{c} 49.42\\ \pm 0.46\end{array}$	$\begin{array}{r} 5.895\\ \pm \ 0.048\end{array}$	$\substack{10.70\\\pm\ 0.30}$	7.961 ±0`620	1254 ± 98	3012 ±115
1000	282	$\begin{array}{r} 292.7 \\ \pm 6.0 \end{array}$	$\substack{17.38\\\pm\ 0.37}$	$\begin{array}{r} 55.91 \\ \pm 1.49 \end{array}$	6.034 ±0.402	1638 ++109	$\begin{array}{r} 3412 \\ \pm 103 \end{array}$
1100	234	$\begin{array}{c}932.1\\\pm\ 24.8\end{array}$	$\begin{array}{r} 48.54 \\ \pm 1.48 \end{array}$	$\begin{array}{r}175.9\\\pm \ 6.5\end{array}$	$\begin{array}{r}3.455\\\pm0.305\end{array}$	$\begin{array}{r} 2805 \\ \pm 248 \end{array}$	4266 ±145
1200	200	1263 ± 46	$\begin{array}{r} 79.46 \\ \pm \ 4.63 \end{array}$	$\begin{array}{r} 242.3 \\ \pm 7.8 \end{array}$	$\begin{array}{c} 3.762 \\ \pm 0.380 \end{array}$	$\begin{array}{r} 2553 \\ \pm 258 \end{array}$	4113 ±164
1450	441	547.7 :± 28.2	109.4 ± 5.3	$\begin{array}{r}102.9\\\pm5.4\end{array}$	$\begin{array}{r} 3.363 \\ \pm 0.420 \end{array}$	$3005 \\ \pm 375$	4379 ±206
1650	307	$\begin{array}{c} 380.8 \\ \pm 35.5 \end{array}$	143.2 ±14.1	$\begin{array}{r} 73.26 \\ \pm 6.71 \end{array}$	$\begin{array}{c} 3.288 \\ \pm 0.311 \end{array}$	3142 ±297	4452 ±157
Total	3096	308.5	45.32	65.88	7.418	1336	3105

Table 1 (Continued). ALHA77214 (L or LL) 0.5550 g, $J = 0.003436 \pm 0.000033$

1) All tabulated data have been corrected for the blanks and radioactive decay of ³⁷Ar between irradiation and analysis, but do not include other corrections.

2) 40 Ar*/ 39 Ar* indicates a ratio of the radiogenic 40 Ar from the decay of 40 K ($\equiv {}^{40}$ Ar*) to the K-derived 89 Ar by a reaction of 30 K(n, p) 30 Ar ($\equiv {}^{39}$ Ar*).

from which ${}^{40}Ar - {}^{39}Ar$ ages shown in the last column of Table 1 were calculated. The assigned uncertainties in the Ar isotopic ratios are statistical (1σ) .

4.1. ⁴⁰Ar/³⁹Ar ages

In Figs. 1–3, the age spectra of the present samples are shown together with the ${}^{40}Ar/{}^{36}Ar-{}^{39}Ar/{}^{36}Ar$ plots. The calculated age in each temperature fraction is included in the last column of Table 1.

The sample ALHA77015 (L3) shows a rather peculiar age spectrum which indicates lower ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ ages at lower and higher temperatures than the intermediate temperature fractions. The intermediate temperature fractions (900–1200°C) seem to show a plateau-like pattern, corresponding to the age of 4515 ± 48 Ma, though the fractions cover only 27% of the total ${}^{39}\text{Ar}$ released. The maximum ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ age of 4539 ± 88 Ma is observed in the 900°C fraction. The total ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ age is 4065 Ma, which suggests the probable radiogenic ${}^{40}\text{Ar}$ loss from the sample. The apparent low ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ ages in the low temperature fractions can be explained as the partial radiogenic ${}^{40}\text{Ar}$ loss, but those in the high temperature fractions require other explanations. Decreases in the apparent ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ age at higher temperatures

Fig. 1. The ${}^{40}Ar - {}^{39}Ar$ age diagram and the ${}^{40}Ar/{}^{36}Ar - {}^{39}Ar/{}^{36}Ar$ plot for ALHA77015 (L3). The numerical figure at each column indicates the degassing temperature in ${}^{\circ}C$. The uncertainties represent 1σ . In the ${}^{40}Ar/{}^{36}Ar - {}^{39}Ar/{}^{36}Ar$ plot, a reference isochron of 4500 Ma is drawn which goes through the zero point.

Fig. 2. The ⁴⁰Ar-³⁹Ar age diagram and the ⁴⁰Ar/³⁶Ar-³⁹Ar/³⁰Ar plot for ALHA77304 (LL3). The 900°C fraction was lost and 10% loss of ³⁹Ar is assumed in the age diagram. In the right figure, a reference isochron of 4500 Ma is drawn which goes through the zero point.

have often been observed in meteorites (e.g. TURNER and CADOGAN, 1974; TURNER et al., 1978) and lunar samples (e.g. TURNER et al., 1971; KIRSTEN et al., 1972). То explain this phenomenon, ³⁹Ar recoil from fine-grained K-bearing phases into low-K retentive phases such as olivine or pyroxene has been suggested (TURNER and CADO-GAN, 1974; HUNEKE and SMITH, 1976). In this case, it is assumed that the high apparent ages at lower temperatures are raised and the high temperature ages are lowered by the recoiling of ³⁹Ar in a closed system. If this is the case for the sample ALHA77015, an integrated 4° Ar- 3° Ar age of 4228 ± 66 Ma for the fractions from 900°C to 1650°C may be more significant than the apparent plateau age of $4515\pm$ 48 Ma. However, the plateau-like age is much closer to the plateau or maximum ages observed for the other two samples in this study than is the integrated age described above. Furthermore, the four intermediate temperature fractions (900-1200°C) show almost identical ⁴⁰Ar-³⁹Ar ages. For these reasons, the plateau age seems more significant than the integrated age (\geq 900°C) for this sample. To some extent, the decrease in the ⁴⁰Ar-³⁹Ar age at higher temperatures might be due to blank+background corrections, but it is difficult to attribute the whole phenomenon to this only. Hence, the meaning of the ⁴⁰Ar-³⁹Ar age of this sample is less clear than those of the other two samples.

For the sample ALHA77304 (LL3), the 900°C fraction was lost due to experimental error. However, the remaining fractions show a rather well-defined plateau

Fig. 3. The ⁴⁰Ar-³⁹Ar age diagram and the ⁴⁰Ar/³⁸Ar-³⁹Ar/³⁸Ar plot for ALHA77214 (L or LL). The line of 4500 Ma in the right figure is drawn as a reference.

age of 4503 ± 52 Ma for $1100-1650^{\circ}$ C fractions. Assuming 10% of ³⁹Ar release in the 900°C fraction, the plateau range covers about 46% of total ³⁹Ar. As shown in Fig. 2, this sample shows partial radiogenic ⁴⁰Ar loss in lower temperature fractions. A relatively low total ⁴⁰Ar-³⁹Ar age of 3680 Ma reflects this effect.

In Fig. 3, the result for the sample ALHA77214 (L or LL) is shown; this is a typical stair-case pattern age spectrum. No definite plateau is observed. The total ${}^{40}Ar - {}^{39}Ar$ age for this sample is 3105 Ma, the youngest among the present three samples. The 1450°C and 1650°C fractions show, however, relatively high ${}^{40}Ar - {}^{39}Ar$ ages of about 4400 Ma. The rather steep increase of apparent ${}^{40}Ar - {}^{39}Ar$ age from the value of about 1600 Ma suggests that the radiogenic ${}^{40}Ar - {}^{39}Ar$ age over 80% of ${}^{39}Ar$ released is not so common for meteorites and needs some intense effect on this sample. However, age spectra do not support the shock effect on this sample. Since this sample is strongly weathered, the Ar loss is probably attributable mainly to the weathering of the sample. Hence, the highest apparent ${}^{40}Ar - {}^{39}Ar$ age for

Fig. 4. The release patterns of Ar isotopes for ALHA77015. Note that ³⁶Ar correlates well with ³⁸Ar_{tr} and shows a quite different pattern from ³⁸Ar_{sp}. Relatively high release of ³⁸Ar_{sp} at the lower temperatures suggests that those fractions may mostly include Clderived ³⁸Ar artificially produced by neutron irradiation.

184

this sample is closer to the time of thermal event for this sample and indicates the lower limit to the age of the event.

4.2. Release patterns of Ar isotopes

In Fig. 4, the release patterns of Ar isotopes for ALHA77015 are shown as an example to compare the different characteristics of degassed Ar of different origin. Clear correlations are observed between ³⁸Ar_{tr(trapped)} and ³⁶Ar, and between ⁴⁰Ar and ³⁹Ar. Ca-derived ³⁷Ar is mostly degassed at higher temperatures, especially in the 1450°C fraction. K-derived ³⁹Ar and ⁴⁰Ar which is mostly radiogenic derived from the decay of ⁴⁰K are degassed at lower and higher temperatures. The low temperature degassing components of both ³⁹Ar and ⁴⁰Ar were probably trapped in relatively loose sites such as grain boundaries and interstitials. The release pattern of ${}^{38}Ar_{sp(spallogenic)}$ is completely different from other Ar isotopes. As shown in Table 1, the ³⁸Ar/³⁶Ar ratio in the 800°C fraction exceeds 2.5 and clearly indicates the occurrence of Cl-derived ³⁸Ar in this fraction. Furthermore, apparent ³⁸Ar_{ap} is degassed mostly at lower temperatures. The most low temperature fractions of ³⁸Ar_{sp} are probably Cl-derived ³⁸Ar artificially produced in the reactor and not reflect the true spallogenic component. Only the high temperature fractions of ³⁸Ar_{sp} may indicate the net spallogenic component for this sample, but it is difficult to identify each component separately in each fraction.

4.3. K and Ca concentrations

By comparing the total amounts of K-derived ³⁹Ar and Ca-derived ³⁷Ar of a sample with those of the standard, we can estimate the K- and Ca-contents.

Based on the results of the standard sample MMhb-1, we have for the ³⁹K (n, p) ³⁹Ar reaction,

Sample	[K] (%)*	[Ca] (%)*	Total	⁴⁰ Ar- ³⁹ Ar age (Ma)** Minimum Maximum Plateau Plateau range			
			Total	winnun	Maximum	Tateau	
ALHA77015 (L 3)	0.060	1.1	4065	3183 ±459	4539 ± 88	$\binom{4514}{\pm 48}$	900-1200°C (27% of released ⁸⁹ Ar)
ALHA77304 (LL 3)	>0.080	>1.3	3680	$\begin{array}{r} 685.5\\ \pm \ 45.4\end{array}$	4538 ± 90	4503 ±52	1100-1650°C (46% of released ³⁹ Ar)
ALHA77214 (L or LL)	0.093	1.1	3105	1617 ±153	4452 ±157		

Table 2. Summary of ⁴⁰Ar-³⁹Ar ages of meteorites from Allan Hills, Antarctica.

* K- and Ca-contents were estimated from the total amounts of ³⁹Ar and ⁸⁷Ar of samples by comparing those of the standard sample MMhb-1. About 30% uncertainty is included in each value.

** ⁴⁰Ar-⁸⁹Ar age was calculated by using the following constants for ⁴⁰K. $\lambda_e = 0.581 \times 10^{-10} \text{ yr}^{-1}$, $\lambda_{\beta} = 4.962 \times 10^{-10} \text{ yr}^{-1}$, ⁴⁰K/K = 1.167 × 10⁻⁴ (STEIGER and JÄGER, 1977). Uncertainties in the ages correspond to 1σ .

³⁹Ar*/K= $(2.5\pm0.4) \times 10^{-5}$ ccSTP/gK. Similarly, we obtain K/Ca= $(0.51\pm0.11)^{39}$ Ar*/³⁷Ar.

This coefficient is quite similar to that reported earlier (KANEOKA *et al.*, 1979), 0.54 ± 0.11 .

By using these relationships, K- and Ca-contents were estimated for the present samples. The results are summarized in Table 2, together with the 40 Ar- 39 Ar ages. As shown in Table 2, K-contents for present samples estimated range from 0.06 to 0.09%. Considering the 30% uncertainty, these values are compatible with reported values for L and LL chondrites (MASON, 1971). Ca-contents vary from 1.1 to 1.3%, which also agree with the reported values (MASON, 1971) within the experimental uncertainty. These results imply that the recovery of Ar gases from each sample was reasonable.

5. Discussion

The present results suggest that even the unequilibrated chondrites of petrologic

Fig. 5. ⁴⁰Ar-³⁰Ar ages of unshocked ordinary chondrites.

Samples are arranged in the order of H, L and LL chondrites with the less equilibrated chondrite at the upper row. Closed symbol indicates a plateau ⁴⁰Ar-³⁹Ar age and open symbol a total ⁴⁰Ar-³⁹Ar age of a sample which shows no significant loss of radiogenic ⁴⁰Ar. The uncertainty indicates lo. In the L-chondrite group, there seems to be a correlation between the age and the petrologic type of a sample. Such a correlation is not clear for H- and LL-chondrite groups. Data sources: CADOGAN and

TURNER (1975); KANEOKA et al. (1979); PODOSEK and HUNEKE (1973); TURNER et al. (1978) and present study.

186

type 3 show partial degassing of radiogenic ⁴⁰Ar to some extent. Compared with the results of equilibrated chondrites such as Yamato-74640 (H5–6) (KANEOKA *et al.*, 1979), the total ⁴⁰Ar–³⁹Ar ages seem to have no correlation with their petrologic types. This means that the total ⁴⁰Ar–³⁹Ar (and K-Ar) ages do not always reflect the degree of metamorphism, but include the effect of later disturbances such as weathering effects. This conjecture is compatible with the results reported by other investigators (*e.g.* TURNER *et al.*, 1978).

The ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ plateau or plateau-like ages may correlate better with the petrologic type, since these ages are much less affected by later disturbances in comparison with total ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ (and K-Ar) ages. The results are summarized in Fig. 5, where present results are included together with other meteorite results, most of which were obtained by TURNER *et al.* (1978). The result for Yamato-74640 (H5-6) (KANEOKA *et al.*, 1979) is also included.

As shown in Fig. 5, there seems to be a trend that unequilibrated chondrites show slightly older ${}^{40}Ar - {}^{39}Ar$ ages than equilibrated chondrites in the L-chondrite group. However, the trend is not clear in the H- and LL-chondrite groups. In these groups, the unequilibrated chondrites show relatively old ${}^{40}Ar - {}^{39}Ar$ ages, but some equilibrated chondrites also show similar old ages and it is difficult to identify the difference. Furthermore, there may be some systematic differences in the obtained ${}^{40}Ar - {}^{39}Ar$ ages among different investigators, which may also affect to obscure the trend. With the condition that such effects are relatively small, we can say that the difference in the age among these chondrites depending on their petrologic type may not exceed 100 Ma.

On the other hand, the average 40 Ar $-{}^{39}$ Ar age for each chondrite group seems to be systematically younger than those of Pb-Pb and Sm-Nd ages (KIRSTEN, 1978). Such differences in the ages determined by different methods probably relate to the different critical temperatures for each radioactive and radiogenic element.

In order to elucidate the time relationship with the degree of metamorphism, a more systematic survey for unshocked chondrites is required. The application of different dating techniques for the same sample is also much desired to clarify the detailed structure of the thermal history of a meteorite.

Acknowledgments

I appreciate Prof. T. NAGATA and Dr. K. YANAI of the National Institute of Polar Research for providing me the samples used in this study. I am grateful to Prof. F. A. PODOSEK of Washington University, who has much contributed to improve the manuscript. Prof. M. OZIMA of the University of Tokyo has given me continuous encouragements through this study, to whom I also express my thanks. I thank Mr. Y. TAKIGAMI for some technical support in this study. This study was financially supported by the Ministry of Education, Science and Culture under the grant No. 339024.

References

- ALEXANDER, E. C., JR., MICKELSON, G. M. and LANPHERE, M. A. (1978): MMhb-1: A new ⁴⁰Ar-³⁹Ar dating standard. U. S. Geol. Survey Open-File Report 78-701, 6-9.
- BOGARD, D. D., HUSAIN, L. and WRIGHT, R. J. (1976): ⁴⁰Ar-³⁹Ar dating of collisional events in chondritic parent bodies. J. Geophys. Res., **81**, 5664-5678.
- CADOGAN, P. H. and TURNER, G. (1975): Luna 16 and Luna 29 revisited. Meteoritics, 10, 375-376.
- HUNEKE, J. C. and SMITH, S. P. (1976): The realities of recoil: ³⁹Ar recoil out of small grains and anomalous age patterns in ³⁹Ar-⁴⁰Ar dating. Proc. Lunar Sci. Conf. 7th, 1987-2008.
- KANEOKA, I., OZIMA, M. and YANAGISAWA, M. (1979): ⁴⁰Ar-³⁹Ar age studies of four Yamato-74 meteorites. Mem. Natl Inst. Polar Res., Spec. Issue, **12**, 186–206.
- KIRSTEN, T. (1978): Time and the solar system. The Origin of the Solar System, ed. by S. F. DERMOTT. Chisester, John Wiley, 267-346.
- KIRSTEN, T., DEUBENR, J., HORN, P., KANEOKA, I., KIKO, J., SCHAEFFER, O. A. and THIO, S. K. (1972): The rare gas record of Apollo 14 and 15 samples. Proc. Third Lunar Sci. Conf., Vol. 2, 1865–1889.
- MASON, B. ed. (1971): Handbook of Elemental Abundances in Meteorites, New York, Gordon and Breach, 555 p.
- PODOSEK, F. A. (1971): Neutron-activation potassium-argon dating of meteorites. Geochim. Cosmochim. Acta, 35, 157–173.
- PODOSEK, F. A. (1972): Gas retention chronology of Petersburg and other meteorites. Geochim. Cosmochim. Acta, 36, 755-772.
- PODOSEK, F. A. and HUNEKE, J. C. (1973): Noble gas chronology of meteorites. Meteoritics, 8, 64.
- TURNER, G. (1968): The distribution of potassium and argon in chondrites. Origin and Distribution of the Elements, ed. by L. H. AHRENS. New York, Pergamon, 387–398.
- TURNER, G. (1969): Thermal histories of meteorites by the Ar³⁹-Ar⁴⁰ method. Meteorite Research, ed. by P. M. MILLMAN. Dordrecht, D. Reidel, 407-417.
- TURNER, G. and CADOGAN, P. H. (1974): Possible effects of ³⁹Ar recoil in ⁴⁰Ar-³⁹Ar dating of lunar samples. Proc. Lunar Sci. Conf. 5th, 1601–1615.
- TURNER, G., ENRIGHT, M. C. and CADOGAN, P. H. (1978): The early history of chondrite parent bodies inferred from ⁴⁰Ar-³⁹Ar ages. Proc. Lunar Planet. Sci. Conf. 9th, 989-1025.
- TURNER, G., HUNEKE, J. C., PODOSEK, F. A. and WASSERBURG, G. J. (1971): ⁴⁰Ar-⁸⁹Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett., **12**, 19–35.
- VAN SCHMUS, W. R. and WOOD, J. A. (1967): A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta, 31, 747-765.
- ZÄHRINGER, J. (1966): Primordial argon and the metamorphism of chondrites. Earth Planet. Sci. Lett., 1, 379-382.

(Received May 21, 1980)