A high-precision continuous measurement system for the atmospheric O_2/N_2 ratio at Ny-Ålesund, Svalbard and preliminary observational results

Daisuke Goto1,2,*, Shinji Morimoto1,3, Shuji Aoki2 and Takakiyo Nakazawa2

Abstract: With the aim of carrying out detailed monitoring of temporal variations in the atmospheric O_2/N_2 ratio at Ny-Ålesund, Svalbard, we have developed a new high-precision continuous measurement system, with a precision of better than ± 4.0 per meg, using a fuel-cell O_2 analyzer. Considering the remoteness of the observation site, special attention was paid to the measurement system, in that: (1) the system can be controlled remotely from Japan using the Internet; (2) all of the data output from the system can be monitored and collected in Japan via the Internet; (3) a specially designed water trap based on a Stirling cooler is employed to automate the removal of water vapor from the sample air; (4) the CO$_2$ concentration can also be measured; and (5) it is possible to operate the system for one year without having to manually replace the high-pressure cylinders of standard gas and reference air. Systematic observation of the atmospheric O_2/N_2 ratio using the newly developed measurement system began at the site on November 8, 2012. By

1 情報・システム研究機構国立極地研究所．National Institute of Polar Research, Research Organization of Information and Systems, Midori-cho 10–3, Tachikawa, Tokyo 190-8518.
2 東北大学大学院理学研究科大気海洋変動観測研究センター．Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578.
3 総合研究本部大学複合科学研究科極域科学専攻．Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies (SOKENDAI), Midori-cho 10-3, Tachikawa, Tokyo 190-8518.

* Corresponding author. E-mail: goto.daisuke@nipr.ac.jp

© 2013 National Institute of Polar Research
analyzing the observational results obtained over the first month, the effectiveness of the measurement system was verified, and the causes of characteristic temporal variations in the observed atmospheric O$_2$/N$_2$ ratio were examined.

1. Introduction

The atmospheric O$_2$ concentration is commonly expressed as a deviation in the O$_2$/N$_2$ ratio relative to an arbitrary reference (Keeling and Shertz, 1992):

$$\delta (O_2/N_2) = \frac{[O_2/N_2]_{\text{sample}}/[O_2/N_2]_{\text{reference}} - 1] \times 10^6 \text{(per meg)}.$$ \hspace{1cm} (1)

As O$_2$ only accounts for 20.946% of air, 4.8 per meg of δ (O$_2$/N$_2$) corresponds to a change of 1 ppm in the O$_2$ concentration (mole fraction). Simultaneous observations of atmospheric δ (O$_2$/N$_2$) and CO$_2$ provide valuable information regarding the global carbon cycle. For example, data from long-term monitoring of these parameters allows us to estimate land biotic and oceanic CO$_2$ sinks separately (e.g., Ishidoya et al., 2012a, 2012b; Manning and Keeling, 2006). In an attempt to develop a better understanding of the global carbon cycle in terms of atmospheric O$_2$, several laboratories have employed various methods to construct high-precision measurement systems for atmospheric δ (O$_2$/N$_2$), and have conducted simultaneous observations of atmospheric δ (O$_2$/N$_2$) and CO$_2$ concentration using discrete flask sampling with subsequent laboratory analysis (Battle et al., 2006; Bender et al., 2005; Ishidoya et al., 2006, 2008a, 2008b, 2012a, 2012b; Keeling and Sherzts, 1992; Langenfelds et al., 1999; Manning and Keeling, 2006; Tohjima et al., 2005, 2008). More recently, continuous measurement systems have also been developed (Goto et al., 2013; Manning et al., 1999; Stephens et al., 2003, 2007; Yamagishi et al., 2008). Using these systems, systematic observations of atmospheric δ (O$_2$/N$_2$) and CO$_2$ concentration have been carried out at fixed ground stations (Goto et al., 2013; van der Laan-Luijkx et al., 2010; Lueker, 2004; Stephens et al., 2007; Yamagishi et al., 2008), as well as on board ships (Thompson et al., 2008; Yamagishi et al., 2012) and aircraft (Stephens et al., 2009). However, there have been very few simultaneous observations of atmospheric δ (O$_2$/N$_2$) and CO$_2$ concentration in the polar regions due to the difficulties of site access (Bender et al., 2005; Ishidoya et al., 2012b; Keeling and Sherzts, 1992; Manning and Keeling, 2006), and continuous observation of atmospheric δ (O$_2$/N$_2$) has yet to be carried out in the Arctic.

To facilitate the first continuous measurements of atmospheric δ (O$_2$/N$_2$) in the Arctic, we have developed a new, high-precision measurement system based on a fuel-cell O$_2$ analyzer, which is also equipped with a non-dispersive infrared (NDIR) CO$_2$ analyzer. Using this system, we initiated systematic and continuous observations of atmospheric δ (O$_2$/N$_2$) at Ny-Ålesund (78°55’ N, 11°56’ E), Svalbard in November 2012. In this paper, we describe the newly developed measurement system, and present our results from the first month of monitoring at the site to demonstrate the effectiveness of the measurement system. Characteristic temporal variations in atmospheric δ (O$_2$/N$_2$) during this period are also examined.
2. Experimental methods

The new measurement system was installed in a laboratory at the Japanese observatory at Ny-Ålesund, Svalbard (Fig. 1). Ny-Ålesund is a small science town located in a tundra mountain valley, and the Japanese observatory is situated about 2 km WNW of the town center. Since the prevailing wind direction at Ny-Ålesund is ESE, the influence of the town on the observatory is usually insignificant. The monthly mean air temperature is \(-14^\circ\text{C}\) in February, but increases to \(+5^\circ\text{C}\) in July.

To minimize the influence of changes in ambient temperature, the measurement system was placed in a small space surrounded by vinyl sheets within the laboratory. Figure 2 is a schematic diagram of the measurement system. We used a differential fuel-cell O\(_2\) analyzer (Sable Systems International, Oxzilla II) and an NDIR (LiCOR, LI-6252) for the measurements of atmospheric O\(_2\) and CO\(_2\), respectively. The O\(_2\) analyzer has two symmetrical flow paths of air, and each path is equipped with a fuel-cell detector. The net reaction

$$\text{O}_2 + 2 \text{Pb}^+ + 4\text{H}^+ \rightarrow 2\text{H}_2\text{O} + 2 \text{Pb}^{2+},$$

takes place in the fuel cell, which produces an electric current that is linearly proportional to the partial pressure of O\(_2\) in the air passing through it. The O\(_2\) analyzer continuously measures the difference in output between the two fuel cells. The fundamental design of our continuous measurement system is essentially the same as that of Goto et al. (2013), but several aspects were completely redesigned for use at this remote site, as described below.

Two water traps (T1 and T2) are attached in parallel to the sample air line, with each trap being a U-shaped stainless steel tube with an outer diameter of 1/2 inch. The air inlet consists of a Dekabon tube with an outer diameter of 4 mm and a cylindrical stainless steel protector, one end of which is closed, and the Dekabon tube is inserted into the protector through the closed end. The air inlet was set at a height of 6 m on the western roof of our

Fig. 1. Location of Ny-Ålesund (78°55’N, 11°56’E), Svalbard.
observatory to face the prevailing winds, and the sample air is drawn through the Dekabon tube and into the laboratory using a diaphragm pump. The sampled air is then initially introduced into a 1 l stainless steel buffer volume. By controlling a flow regulation valve, situated at the outlet of the buffer volume, with the signal from a pressure sensor located downstream from the water traps, the inside pressure of one water trap, which is cooled to −80°C using a Stirling cooler (TWINBIRD Corp., SC-UE15R), is maintained at 0.1 MPa. The excess air is discharged at about 2 l/min into the room through the other trap. This trap is heated to 50°C using a sheet heater wound around its inlet and outlet to remove water remained in the trap. Part of the air flowing through the buffer volume is taken as sample air, and is introduced into the measurement system at a flow rate of 80 ml/min through a stainless steel tube with an outer diameter of 1/8 inch, after removing water vapor by passing it through the trap cooled to −80°C. These two airflows are switched every six hours by controlling solenoid valves V1–V8 (Fig. 2), to change the functions of the two traps; i.e., the opened valves with odd numbers and the closed valves with even numbers are closed and opened, respectively, and the cooled T1 trap and the heated T2 trap are heated and cooled, respectively. As shown in Fig. 3, the system is programmed so that the heating of the trap to be used next is stopped, and its cooling commences, one hour before the flows of air are switched, to cool the trap to −80°C in advance. In addition, the solenoid valve V9 is also opened for one hour before the flows of air are switched to prevent the introduction of wet air into the pre-cooled trap. This drying system for the sample air makes it possible to operate our O₂ measurement system over a long period without the need to manually replace the trap.

It is crucial for the precise measurement of atmospheric δ (O₂/N₂) that the air pressure in the fuel cells is stabilized. To achieve this, a precise differential pressure gauge is set
Measurement system for atmospheric O₂/N₂ ratio at Ny-Ålesund

between each outlet of the O₂ analyzer and a pressure reference volume filled with air at 20 kPa, and a flow regulation valve located at the inlet of the analyzer is controlled by using its signal to minimize pressure differences between the air in the reference volume and the air in the flow path (Goto et al., 2013). When the measurement system is shut down or started up, it is necessary to depressurize or pressurize the reference volume. In our system, by controlling the solenoid valve (Ve or Vf) via the Internet from Japan, the reference volume can be pressurized or depressurized. This functionality is extremely useful, and allows the remote control of our measurement system.

The output data from the O₂ and CO₂ analyzers are recorded onto the hard disk of an in situ system control/management personal computer, and also collected in Japan via the Internet. To confirm the condition of the system, the inside and outside temperatures of the O₂ analyzer, the room temperature, the flow rate of each gas, pressure fluctuations in each flow path of the O₂ analyzer, and the inside pressure of the reference volume can be monitored in Japan. We also used a web camera to monitor the system in Japan.

A large amount of reference air is required to operate the O₂ measurement system for a long period, because the reference air always flows through one fuel cell at a rate of 80 ml/min. In our system, six 48 l high-pressure cylinders filled with the reference air are used to allow the measurement of atmospheric δ (O₂/N₂) for one year without the need to manually exchange the cylinders. Three of the six cylinders are connected to one port of an automatic changeover valve, and the remainder to the other port. If the pressure in one port of the changeover valve falls below 1.0 MPa, the flow is automatically switched to the other port. As mentioned below, by testing the combination of the reference air cylinders with different values of δ (O₂/N₂), we found that the cylinders to be connected to the same port should contain air with similar values. If reference air with significantly different δ (O₂/N₂) values are connected to one port, the δ (O₂/N₂) value of the mixed air is highly variable, which leads to unstable observed values of atmospheric δ (O₂/N₂).

Fig. 3. Operation timing of solenoid valves (V1–V8 in Fig. 2), and the coolers and heaters (around T1 or T2 in Fig. 2) of the sample-air dryer. Gray areas indicate that the solenoid valves are opened and the cooler or heater is activated.
As our measurement procedures, as well as the standard gases and their preparation, have been described in detail elsewhere (Goto et al., 2013), only a brief description is presented here. High and low standard gases, and dried sample air, are introduced into one flow path of the O₂ analyzer in order, while the reference air always flows through the other path. To compensate for the different output drifts of the two fuel cells, the two flow paths are alternately switched every three minutes using a six-port valve, and the difference between the output signals before and after the switching is read as a measure of the partial pressure difference of O₂ between the sample air (or the standard gas) and the reference air. To calibrate the O₂ analyzer, the high and low standard gases are introduced every hour into the analyzer, each gas flowing for six minutes with the alternation of the flow paths occurring three minutes after introduction. The high and low standard gases, calibrated against our primary standard, are chosen so that the atmospheric δ(O₂/N₂) to be measured falls between their values. The δ(O₂/N₂) value of the sample air is determined from the analyzer outputs of the sample and standard gases, assuming a linear relationship between the analyzer output and the δ(O₂/N₂) value. The analytical precision of our O₂ measurement system was estimated to be ±1.4–1.9 per meg by analyzing the same air repeatedly in the air-conditioned laboratory.

As mentioned above, our measurement system is equipped with an NDIR. Its sample cell is connected to one outlet of the O₂ analyzer by a stainless steel tube. Therefore, the high standard gas, the reference air, the low standard gas, and the reference air are introduced into the sample cell for three minutes in sequence, and subsequently the sample air, and then the reference air flow through the cell. The high and low standard gases also include the different amounts of CO₂, so that each gas acts as a CO₂ standard gas. The analytical precision of the CO₂ concentration is ±0.03–0.05 ppm. The measured values of the CO₂ concentration are temporally interpolated linearly to estimate the corresponding value at the time when δ(O₂/N₂) is measured.

3. Preliminary results

Hourly mean values of atmospheric δ(O₂/N₂) and CO₂ concentration obtained from continuous observations at Ny-Ålesund between November 8 and December 8, 2012 are shown in Fig. 4a) and b). The standard deviations (1σ) of the hourly δ(O₂/N₂) means are also shown in the figure. As mentioned in section 2, the analytical precision of our measurement system was estimated to be ±1.4–1.9 per meg for δ(O₂/N₂). However, Fig. 4a) shows that the standard deviation is around 3–5 per meg for the period November 27–December 8, when small fluctuations of δ(O₂/N₂) were observed with an average of 4.0 ± 1.4 per meg. Such a decrease in analytical precision is probably due to the fact that our laboratory at Ny-Ålesund is not completely air-conditioned, so that the room temperature is relatively easily affected by the low and variable outside air temperatures. This problem is likely to be lessened during the warm season, when it is expected that the standard deviation will decrease. Periods with standard deviations larger than 5.0 per meg are also occasionally seen in Fig. 4. For example, standard deviations of about 15 and 10 per meg are seen on November 9 and November 22–25, respectively. These large standard deviations were generated in association with the meteorological conditions at the observation site. The air
Measurement system for atmospheric O$_2$/N$_2$ ratio at Ny-Ålesund

By comparing the standard deviations of δ (O$_2$/N$_2$) with the results shown in these figures, it is thought that the fuel-cell output is strongly affected by the inside temperature of the analyzer, which is correlated with the room and air temperatures. The inside temperature of the O$_2$ analyzer tends to be unstable when the room temperature is lowered to approximately 15°C, while the inside temperature is stable within \pm 0.02°C when the room temperature varies around 20°C. As mentioned above, our measurement system is situated in a space surrounded by vinyl sheets to minimize the influence of changes in the room temperature, and there is also a panel heater in the laboratory. These preliminary results strongly suggest that further stabilization of the room temperature is needed. Therefore, we intend to install another heater as soon as possible to enable us to conduct high-precision measurements of atmospheric δ (O$_2$/N$_2$) at all times.

Extraordinarily large standard deviations of over 30 per meg also occurred between November 13 and 15, despite relatively small fluctuations in the inside temperature of the O$_2$ analyzer. As described in section 2, six reference air cylinders are connected to our O$_2$ measurement system. Three of these have δ (O$_2$/N$_2$) values of about $-$1500 per meg, while the remainder are around $-$1900 per meg. We commenced monitoring on November 8 using the port of the changeover valve to which the reference air cylinders with $-$1500 per
meg were connected, and short-term variability of the measured $\delta (O_2/N_2)$ value was found
to be relatively small. To examine the combination of the reference air cylinders with
different $\delta (O_2/N_2)$ values, measurements were made between November 13 and 14 after
connecting the reference air cylinders with -1500 per meg and -1900 per meg together to
that port. Following this change in the combination of the reference air, the measured values
of atmospheric $\delta (O_2/N_2)$ were temporally scattered, yielding large standard deviations. This
phenomenon is thought to occur due to non-uniform mixing of the reference air with
different $\delta (O_2/N_2)$ values in the tube between the changeover valve and the O$_2$ analyzer.
Monitoring was then restarted on November 16 after undoing the combination of the
reference air, and low standard deviations were observed again. The results of this testing
indicate that the reference air with similar values of $\delta (O_2/N_2)$ should be connected to one
port of the changeover valve, or that the $\delta (O_2/N_2)$ values of all the reference air to be used
should be adjusted to similar levels in advance. Another solution would be to insert a
buffering volume into the tube between the changeover valve and the six-port valve, to
ensure sufficient mixing of the reference air.

As shown in Fig. 4 a) and b), two characteristic events were observed on November
11–12 and 22–23. During the former period, $\delta (O_2/N_2)$ increased rapidly by about 90 per
meg and then decreased by about 60 per meg over a short period, while no clear change was
observed in the CO$_2$ concentration. It is known that three processes; i.e., (1) fossil fuel
burning, (2) respiration and photosynthesis of the terrestrial biosphere, and (3) gas exchange
between the atmosphere and the ocean, are the main causes of variations in atmospheric $\delta
(O_2/N_2)$ and CO$_2$ concentration. Atmospheric $\delta (O_2/N_2)$ and CO$_2$ concentration are negatively
correlated when processes (1) or (2) occur. In contrast, neither variable shows a close
relationship during process (3), because the time period required for equilibration of O$_2$ to
be attained between the atmosphere and the ocean is only a few weeks, whereas that for
CO$_2$ is about one year. Considering this, the event observed at Ny-Ålesund on November
11–12 was probably related to the transportation of an air mass influenced by O$_2$ emission
from the ocean. In this connection, Lueker (2004) found from continuous O$_2$ observations at
Trinidad Head, California that atmospheric $\delta (O_2/N_2)$ decreased when strong coastal
upwelling events occurred, due to the uptake of atmospheric O$_2$ by the ocean. Similarly,
observations at Cape Ochi-ishi, northern Japan by Yamagishi et al. (2008) also showed that
atmospheric potential oxygen (Stephens et al., 1998), which is controlled mainly by air–sea
O$_2$ exchange, largely varied with time in association with O$_2$ emission from strong
phytoplankton blooms in the Okhotsk Sea. However, neither study observed any clear
variations in the atmospheric CO$_2$ concentration during the respective O$_2$ events.

With respect to the event on November 22–23, the $\delta (O_2/N_2)$ value decreased by about
50 per meg and then returned to its original level, while the CO$_2$ concentration increased by
about 6 ppm and then decreased by almost the same amount. Figure 5 shows a negative
correlation between $\delta (O_2/N_2)$ and the CO$_2$ concentration for this event; the $-O_2 : CO_2$
exchange ratio, defined as the slope of a linear regression line between the measured values
of $\delta (O_2/N_2)$ and CO$_2$ concentration, is calculated to 1.46 ± 0.12 ppm/ppm. It is known that
the $-O_2 : CO_2$ exchange ratio depends on the process that controls their variation. For
example, the $-O_2 : CO_2$ exchange ratio associated with fossil fuel burning is estimated to be
1.83–2.00 ppm/ppm for natural gas, 1.52–1.56 ppm/ppm for gasoline, 1.39–1.44 ppm/ppm
for oil, and 1.17 ppm/ppm for coal (Keeling, 1988). Severinghaus (1995) also proposed a−
Measurement system for atmospheric O_2/N_2 ratio at Ny-Ålesund

O$_2$: CO$_2$ exchange ratio of 1.10 ± 0.05 ppm/ppm for terrestrial biospheric activities. Since the observed ratio of 1.46 ± 0.12 ppm/ppm is close to those expected from the consumption of oil and gasoline, we suggest that the event observed on November 22–23 was caused by the influence of fossil fuel burning in urban areas. We are currently analyzing these observed events in more detail.

4. Summary

To study temporal variations of atmospheric δ (O_2/N_2) in the Arctic region in detail, as well as to contribute to a better understanding of the global carbon cycle, we have developed a new high-precision continuous measurement system. Considering its intended use at a very remote site, the measurement system was designed to incorporate some convenient and indispensable functions: (1) the operation and monitoring of the system, as well as collection of the output data from the O_2 and CO$_2$ analyzers, can be controlled from Japan via the Internet; (2) by employing a specially designed trap for drying the sample air, as well as by connecting eight cylinders (one high standard gas, one low standard gas, and six reference air) to the measurement system, the system can monitor continuously for one year without the need for any additional manual maintenance; and (3) simultaneous measurements of atmospheric δ (O_2/N_2) and CO$_2$ concentration are performed at precisions of better than ± 4.0 per meg and ± 0.05 ppm, respectively.

Using this measurement system, systematic and continuous observations of atmospheric δ (O_2/N_2) were initiated at Ny-Ålesund, Svalbard in November 2012, which is the first continuous observation project in the Arctic region. From observational results obtained during the first month, we found that measured values of atmospheric δ (O_2/N_2) are

![Fig. 5. Correlation between atmospheric δ(O$_2$/N$_2$) and CO$_2$ concentration observed at Ny-Ålesund on November 22-23, 2012. Linear regression line (dashed) is also shown.](image)
usually stable, with small standard deviations of 5.0 per meg or less, indicating the high performance of the measurement system, but the values temporally scatter at low room temperatures below about 15°C. To reduce this scattering of the measured values, the temperature environment of the laboratory must be stabilized as soon as possible. Two characteristic events related to changes in atmospheric $\delta (O_2/N_2)$ were also observed on November 11–12 and 22–23. By considering the relationship between the measured values of $\delta (O_2/N_2)$ and CO$_2$ concentration, we found that the former event was attributable to air–sea O$_2$ exchange, while fossil fuel burning was responsible for the latter event.

If we are to determine the nature of temporal variations in atmospheric $\delta (O_2/N_2)$ in the Arctic, and develop a better understanding of the global carbon cycle, long-term operation of this new high-precision monitoring system will be indispensable.

Acknowledgements

We are grateful to Dr. Shohei Murayama and Dr. Shigeyuki Ishidoya for their helpful advice regarding the air drying system. This study was partly supported by the GRENE Arctic Climate Change Research Project and the MEXT-subsidized project “Formation of a Virtual Laboratory for Diagnosing the Earth's Climate System”.

References

Measurement system for atmospheric \(O_2/N_2 \) ratio at Ny-Ålesund

