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Abstract: During March/April 1984 South Africa studied the hydrology of 
an area of the South Indian Ocean (52-64°£) as part of the first phase of the 

Second International BIOMASS Experiment (SIBEX). Both Bongo and neuston 

nets were deployed at each of 45 oceanographic stations and krill (Euphausia 

superba DANA) were collected. Net sample analyses showed post-larval krill 
to be unevenly distributed throughout the survey area and concentrated in the 
East Wind Drift south of the 0° C surface temperature isotherm. The mean 

areal biomass of post-larval krill was 5. 5 X 105t ( ± 45 % ). Only late stage larvae 

were encountered and the mean numerical abundance (32.5 per 1000m3) of larvae 

was low. Larvae were more or less evenly distributed throughout the survey 

area. The inter-relationship between krill distribution patterns and water circu­

lation in the region is discussed. 

1. Introduction 

The south-east Indian Ocean is one of the least well studied biogeographical re­

gions of the Southern Ocean (EL-SAYED et al., 1979). This is surprising since both 

Prydz Bay and the Enderby Penninsula (50-70°£) environs have long been implicated 

as areas of high biological productivity (MARR, 1962; MACKINTOSH, 1972; EVERSON, 

1977; LuBIMOVA et al., 1980). In particular, the presence of relatively large, localised 

concentrations of krill (Euphausia superba DANA) in the region (MACKINTOSH, 1973; 

HAMPTON, 1983) has been thought to result from circulatory effects induced by a per­

sistent and large anti-cyclonic gyre between 50 and 85°E {ZVEREV, 1963; LuBIMOVA et al., 
1980; SMITH et al., 1984). 

During the First International BIOMASS Experiment (FIBEX) in 1981, hydro­

acoustic results provided direct evidence of high krill abundances near Prydz Bay 

(ANONYMOUS, 1981 ). Estimates put the absolute krill biomass at 5.4 X l01t or some 5 

times greater than a similar area surveyed in the Western Atlantic (HAMPTON, 1983); 

hitherto considered one of the areas in which krill abundance is highest (MARR, 1962; 

EVERSON, 1977; LUBIMOVA et al., 1980). 

Following FIBEX, the BIOMASS Technical Group on Programme Implementa­

tion and Co-ordination recommended that the Second International BIOMASS Experi­

ment (SIBEX) should focus on process-orientated studies of krill tropho-dynamics during 

the summers of 1983-84 and 1984-85 {ANONYMOUS, 1982). Given the meagre know­

ledge of hydrology in the Prydz Bay region, it was decided that initial emphasis should 

be placed on describing prevailing physical and biological oceanography in the first 
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season (1983-:84). Not only would this be important to understanding the possible 
effects of water circulation on krill distribution, it would also constitute an essential pre­
requisite for the determination of areas of biological interest to be studied during the 
second phase of the experiment (ANONYMOUS, 1982). 

The southern Indian Ocean area surveyed during SIBEX I was divided into three 
sectors. Japan (twice), Australia and South Africa were each responsible for a sepa­
rate sector. This paper reports results from studies of krill biology undertaken as part 
of the South African contribution. 

2. Materials and Methods 

An area of the south-east Indian Ocean (62-66°S; 52-64°E) was surveyed between 
26 March and 20 April, 1984 by the South African Antarctic research and supply 
vessel, MV S. A. AGULHAS. Forty-five oceanographic stations (CTD and Niskin bottle 
casts) were occupied in a grid of 7 legs; each leg extended from the pack-ice edge;to 
approximately 200 nautical miles north (Fig. 1). 

Paired B57 (Bongo) nets were deployed at each station and hauled obliquely from 
250 m to the surface. Each net had a mouth diameter of approximately 60 cm and 
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nets were fitted with 500 and 300 µm mesh respectively. Net filtering rates were 
measured by a flowmeter mounted in the mouth of each net. Both water temperature 
and net depth were monitored continuously during fishing with a submersible, elec­
tronic bathythermograph. This gave a real-time display of both parameters on deck. 
Data were logged directly to digital computer tape and printed out at 5 m intervals. 

A neuston net (mouth area; 0.98 m2, 950 µm mesh), weighted with a IO kg lead­
filled pipe attached to the lower mouth bar, was deployed at each station from a boom 
on the ship's forward port quarter. It was hauled for 10-15 min over a distance of 
approximately one kilometer and the volume of water filtered was calculated from the 
net's dimensions and speed through the water. During all fishing operations ship's 
speed was maintained as close as possible to 2.5 kn ( l  .25 m/s). 

Net samples were sorted aboard, both total and krill catch displacement volumes 
being measured. Larval and post-larval krill were extracted and counted. Prescribed 
techniques were used to assess body length (MAUCHLINE, 1981 a), sexual maturity 
(MAKAROV and DENYS, 1981), larval development (FRASER, 1936; MAKAROV, 1981) and 
state of feeding (RAKUSA-SuszcZEWSKI, 1982). Samples were preserved in buffered 
formalin (4%) and wet/dry weight determinations carried out on representative sample 
aliquots ashore. Catch data were standardised per I 000 m water volume filtered. 

3. Results 

3.1. Post-larval krill 
Post-larval krill were collected in 10 neuston net catches and at 35 Bongo stations. 

The biomass of each catch was calculated from the number of krill in each length class 
(1 mm classes) following the procedure outlined by NAST (1982) and PoMMERANZ et al. 
(1982). The wet weight of 708 animals was measured (277 juveniles/subadults, 219 
males and 18 I females). The following length (/) to weight conversion ( W) was ob­
tained for animals at all stages of sexual maturity and was used in the biomass calcula­
tions: 

w =0.0017 1 3
··

1
2:37, ( 1 ) 

where Wis in mg (wet weight) and l in mm. Values obtained for the exponential stan­
dard error of the regression slope and intercept were 0.0313 and 0.00014, respectively. 
The regression coefficient (r) was 0.983 for the log-log plot of weight on length (Fig. 2). 
A comparison of the above relationship with similar expressions derived by SAHRHAGE 
(I 977 /78) and JAZDZEWSKI et al. (l 978) indicated only slight differences for the post­
larval size ranges sampled (Fig. 2). 

Bongo krill catch biomass varied between O and 491.4 g/ 1000 m3 and for the neuston 
net between O and 74528.6 g/1000 m3

• In the absence of significant differences be­
tween the two mesh sizes used (level of significance P = 0.0 I), Bongo catches were pooled 
and a mean krill biomass calculated for each station. From the station distribution 
it is apparent that the largest catches of krill were taken in the south of the survey grid 
(Figs. 3 and 4), particularly at Stns. 16 and 31. Both these stations lay within an area 
of relatively cold surface water ( < -0.05°C) and were situated close to the ice-edge 
(Fig. 5). 
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Fig. 2. A comparison of length-weight relationships derived from expressions obtained during 
the present survey (A) with those obtained by, (B) JAZDZEWSKI et al. (1978) and (C) 
SAHRHAGE (1977 /78). 

As a result of observed trends in catch distributions, and to improve precision of 
the catch results overall, the survey area was stratified according to the procedure set 
out by SAVILLE (1977) and modified by NAST (1982). Two strata were arbitrarily identi­
fied north and south of the 0°C isotherm. The isotherm coincided with an area of 
apparent midwater upwelling and appeared to represent the boundary between the 
presence of winter water to the north and its absence in the south (i.e. the "Antarctic 
Divergence") (BRUNDRIT, 1985). 

Stratified mean areal krill biomass and associated variance (NAST, 1982) were 
calculated from both neuston and Bongo catch results (Tables 1 and 2). The propor­
tionate standard error of the mean Bongo catch biomass (Table 1) was directly com­
parable with similar results reported by NAST (1982) for RMT-8 catches in the Western 
Atlantic. Assuming that post-larval krill are confined to approximately the top 150m 
of the water column gives a survey total areal biomass of 5.5 X I05t ( +45%) at the 
80% confidence level. It is noticeable that both Bongo mean catch and variance were 
significantly greater in the south than in the northern stratum. This was confirmed 
by a statistical comparison of the mean biomass/haul for the two areal strata using an 
independant sample analysis (SNEDECOR and COCHRAN, 1978). The significant difference 
(P=0.05) between the two strata can be attributed to an incidence of large catches at 
Stns. 16, 31 and 28, in addition to an associated increase in strata! variance in the south 
(Fig. 3). 

Neuston net catches exhibited high variance (Table 2), partly as a result of an ex-
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Fig. 3. Biomass of adult krill caught at each Bongo net station in g/ 1000 ,n3. 

Table 1. Biomass of post-larval krill collected in two arbitrary strata 
with the Bongo net. 

Number of hauls 
Variance between ind. hauls 
Mean biomass/haul -� (g/103m3) 
Variance (x) 
Size of area (nm2) 
Stratified mean biomass/103m3 

Variance stratified mean 
Standard deviation stratified mean 
90% confidence limits 
80% confidence limits 

var 

Size of area x 150 m depth 1. 59x 1013ma 

Biomass of krill in whole area 

Biomass strata 

>0° C <0° C 
25 20 

267. 9 139.5 
8. 6 77. 5 

10. 7 972. 8 
412S6 25221 

Xst = 34. 8 
(Xst) = 144. O 

= 12. 0 
= 34. 76±57% (g/103m3) 
= 34. 76±45% (g/103m3) 

5. 5x 1011 g krill 
5. 5x 105t (±45%) 
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Fig. 4. Biomass of adult krill caught at each neuston net station in g/ 10001113• 

Table 2. Biomass of post-larval krill collected in two arbitrary strata 
with the neuston net. 

Number of hauls 
Variance between ind. hauls 
Mean biomass/haul x (g/103m3) 
Variance (x) 
Size of area (nm2) 
Stratified mean biomass/103m3 

Variance stratified mean 
Standard deviation stratified mean 
90% confidence limits 

80% confidence limits 

,:,[ ] : Excluding Stn. 31. 

Biomass strata 

>0
°
C 

25 
<0

°
C 

20 
16647. 5 
3805. 2 

13856988 
41286 25221 

Xst = 1443. o * [35. 8] 
var LYst)= 1992634. 9 * [356. 2] 

= 1411. 6 *[18. 87J 
= 1443. 0± 164% (g/103m3) 

* [35. 8± 89% (g/103m3)] 
= 1443. 0±127% (g/103m3) 

,:'[35. 8± 68% (g/103m3)] 
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ceptionally large catch at Stn. 31 and partly due to an absence of catches in the northern 
stratum (Fig. 4). The relatively short time ( + 2 min) required to fill the net at Stn. 31 
indicated that it probably encountered a dense krill swarm on the surface. Excluding 
Stn. 31 from the strata! analysis resulted in a marked decrease in the overall catch vari­
ance and a significant improvement in confidence limits (Table 2)-reasons for this are 
discussed later in the paper. Although the absence of neuston net catches in the northern 
stratum tends to validate Bongo catch strata! differences, a lack of data precludes a 
similar statistical evaluation to that undertaken for the Bongo catches in the two strata. 

No significant differences (P=0.05) were observed between night (1600-0800 local 
time) and day (0800-1600) Bongo catch biomass. Conversely, daylight neuston catches 
(P= 0.05) were significantly larger than those taken at night. Again, this could be 
attributed to undefined bias caused by an exceptionaJ iy large catch at Stn. 31 during 
the day. Exclusion of Stn. 31 data from the analyses resulted in no significant differ­
ence between day and night neuston net catches (P=0.05). 

A total of 3952 krill were measured and accumulated length frequency promilles 
for the respective nets are shown (Fig. 6). Weighted-mean body lengths were calculated 
for the neuston (33.5 mm), for the 300 pm ( 42.2 mm) and for the 500 pm ( 42.3 mm) 
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Bongo net catches respectively. No significant differences were apparent between either 
the mean lengths or length frequency distributions obtained for the two Bongo net 
meshes used (P = 0.05). Animals caught with the neuston net were significantly smaller 
than those collected with either Bongo (P =0.05) (Fig. 6), except at Stn. 31 (Fig. 7). 

Most adult and sub-adult maturity stages were present in the Bongo net catches 
(Figs. 8 and 9). Of the 804 male krill staged (Fig. 8), mature but reproductively in­
active animals (Stage 3A-MAKAROV and DENYS, 198 1 )  were predominant. Conversely, 
the majority of females (n =758) were sub-adult (Stage 2B) (Fig. 9). Juvenile animals 
(Stage 1) comprised approximately 20% of all Bongo catches. Maturity stage dis­
tributions were not significantly different for either Bongo net mesh (P = 0.05). 

Body length and sexual maturity were clearly associated in both sexes (Fig. 10). 
At Stn. 12, however, Stage 28 females were significantly larger (mean body length-
48.5 mm) than sub-adults (mean body length-34.2 mm) from any of the other stations 
(Fig. 11). A statistical comparison of the body length/maturity stage regression (after 
SNEDECOR and COCHRAN, 1978) for female krill at all the stations with that for all 
females excluding Stn. 12 (Fig. 11) indicated a significant difference (P = 0.05) between 
the two regression coefficients. This suggests a body length/maturity stage disassocia­
tion for female krill at Stn. 1 2. 
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In keeping with the length frequency distributions reported above, sub-adult (Stages 
2A and B) animals dominated the neuston net catches (Fig. 12). This was particularly 
evident at Stn. 31. 

Ovigerous or spent females (Stages 3D and 3E) were only encountered in signifi­
cant numbers at Stn. I .  Both sexually active male and female animals (Stages 3B and 
3C), with spermataphores attached, were collected at only 5 stations and no discernible 
distributional pattern was evident. 

Stations were therefore grouped according to respective maturity stage affinities 
as follows. A Bray-Curtis dissimilarity analysis was used (FIELD et al., 1982 ; MILLER, 
1985) to classify the proportionate maturity stage distributions of Bongo net catch (both 
nets). Catch data were logarithmically transformed as: 

( 2 )  

where Xii =  proportionate frequency of the ith maturity stage in the jth sample; Yti = 

corresponding transformed score (CLIFFORD and STEPHENSON, 1975). The subsequent 
dendrogram was divided at 60 and 73 % similarity to provide 3 broad station affinity 
groupings for the various maturity stage affiliations (Fig. 13). The resultant similarity 
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Fig. 8. Maturity stage and length frequency distributions of male krill in Bongo net catches. 
The accumulated maturity stage (a) and length frequency (b) promilles are shown 
together with body length ranges for each maturity stage. 

matrix and multi-dimensional scaling (MDS) (FIELD et al., 1982) were used to ordinate 
net stations in a two dimensional matrix (Fig. 1 4). Subsequent MDS clusters confirmed 
dedrogram groupings. Most noticeable was the strong similarity ( > 80%) between 
stations falling within the dendrogram grouping I A  and these were confined to the 
southern extremities of survey Legs 1-6 (Fig. 1 5). An information statistic test (FIELD, 
1969 ; FIELD et al. , 1 982) was used to assess the maturity stage attributes contributing 
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most to station affinity weightings. From the results (Table 3) it is apparent that a 
high incidence of juvenile and sub-adult krill (Stages I and 2) characterized the southern­
most stations, seperating them from those to the north. 

3.2. Larvae 
Late stage larvae (Furci1ia stages 5 and 6) were numerically predominant in the 
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Fig. 10. Maturity stage/body length regressions of both female and male krill collected with 
the Bongo nets. Regression coefficients (r) are significant at P = 0.01. 

Bongo catches (Fig. 16). The size ranges of respective larval developmental stages 
agreed closely with literature values (FRASER, 1936; MAKAROV, 1981). No significant 
differences in either catch levels or length/developmental stage distributions could be 
shown for the two net meshes used (P = 0.05). Larvae were relatively evenly distributed 
throughout the survey area (Fig. 17) and the mean numerical abundance of all larval 
stages was low (Table 4). Compared to post-larval animals, the variance of the mean 
larval catch was significantly less and no significant differences were observed between 
the two areal strata (P = 0.05) (Table 4). All attempts to elucidate larval developmental 
stage station affinities were unsuccessful using both the Bray-Curtis analysis and MDS. 
Calyptopis (Stages 1-3) and early furcilia (Stages 1-2) stages were encountered at only 
1 0  stations, 6 of which were situated south of 64°S. 
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4. Discussion 

129 

Despite possible systematic errors induced by such effects as active net avoidance by 
large krill (ANONYMOUS, 1981 ; BRINTON and ANTEZANA, 1984) and clogging of nets by 
dense phytoplankton aggregations (MARUYAMA et al. , 1982), Bongo net catch variance 
was directly comparable with similar values reported from net surveys else-where in the 
Antarctic (NAST, 1982; MARUYAMA et al., 1982 ; SIEGEL, 1982). The mean areal biomass 
calculated from net catch data (5.21 g/m2

) compares favourably with MARR's (1962) lower 
density estimate for krill in the Weddell Gyre (4.65g/m2

). It is also directly comparable 
with mean krill density (6.2g/m2) obtained during FIBEX in Indian Ocean Sector A 
(15-58°E), but is significantly lower than mean density (60.81 g/m2) in Indian Ocean 
Sector B (61-80°E) (HAMPTON, 1983). 

Conversely, neuston net catches exhibited a high variance and therefore it does 
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not appear valid to use neuston catch data for mean areal biomass estimates. As such, 
horizontal patchiness could account for the extremely skewed catch distributions ob­
served (SAVILLE, 1 977). In particular, Stn. 31 clearly illustrates an extreme effect of 
patchy distribution which is a characteristic feature of krill's swarming behaviour (MARR, 

1 962 ; MAUCHLINE, 1 98 1b). 
Specific data are insufficient to account for the relatively high abundance of krill 

at Stn. 3 1  shown by both neuston and Bongo net catches. Indications are that this 
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Fig. 13. Dendrogram of maturity stage 
station affinities obtained using 
a Bray-Curtis di versity analysis. 

Fig. 14. Two din;ensional configuration of 
maturity stage station affinities ob­
tained by 111ulti-dime11sio11al scaling. 
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Fig. 15. Horizontal distribution of maturity stage station affinity groupings obtained from 
a Bray-Curtis analysis and multi-dimensional scaling. 
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Table 3. Frequencies of occurrence of post-larval maturity stages, which 
best characterize Group I A catches and separate them from 
Groups I B and 2. Maturity stage classifications after MAKAROV 
and DENYS (1981). 

Maturity stage 
2A 
1 
2B 

3B (Male) 
3B (Female) 
3E (Female) 
3A (Female) 
3C (Female) 
3D (Female) 
3A (Male) 

Group l A  Groups 1B and 2 
1 0  5 
1 0  
1 0  

2 
3 
0 
9 

0 
9 

8 
1 0  

13 
14 
4 

18 
5 
1 

1 5  

Species above the upper broken line have an information content >6. 63 
(P=O. 01) ; those above the lower line score >3. 84 (P=O. 05). Maximum 
possible occurrences are Group l A = lO, Groups l B  and 2=18. 
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Fig. 16. Krill larval developmental stage distributions and length ranges of Bongo net 
catches. 
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Fig. 17. Horizontal distribution of krill larvae in number of larvae/ 1000 ms. 

Table 4. Numbers of krill larvae collected in two arbitrary strata with 
the Bongo net. 

Number of hauls 
Variance between ind. hauls 
Mean number/haul x (no/ 1QSm3) 
Variance (x) 
Size of area (nm2) 

Stratified mean number ;10sms 

Variance stratified mean 
Standard deviation stratified mean 
90% confidence limits 
80% confidence l imits 

Biomass strata 

>0°C 

25 
488. 9 
24. 2 
19. 6 

41286 

Xst= 32. 5 
var (Xst)= 39. 6 

= 6. 3 

<0°C 

20 
4460. 1 

46. 1 
223 . 0  

25221 

= 32. 5±33% (no/103m3) 
= 32. 5±25% (no/103m3) 
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station lay within an area of comparatively high phytoplankton production (ALLANSON, 

1985) and therefore could have constituted a suitable feeding ground for foraging krill. 
Full fore-guts in animals collected with the Bongo net confirmed this hypothesis and 
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demonstrates that krill were actively feeding at the station. Conversely, the relatively 
empty stomachs of the neuston catch indicates that animals on the surface were not 
feeding at the time of capture. In accordance with ideas proposed by HAMNER et al. 
(1983) and HAMPTON (1985), these animals may have represented a densely-packed mi­
grating swarm and therefore would not be expected to feed. Although HAMNER et al. 
(1983) have shown that krill do indeed feed on the surface, the high density (74528.6 g/ 
1000 m3) of animals at Stn. 31 provides further support for the presence of a densely 
packed, migrating aggregation. Similarly the predominance of sub-adult animals in the 
neuston net catch would be in direct accordance with ontogenic differences in krill school­
ing behaviour proposed by HAMNER (1984). Such differences are supposedly most mani­
fest in juvenile/sub-adult animals which migrate for large horizontal distances in search 
of food in both shallow and deep waters. 

Significantly higher abundances of krill in the southern stratum suggests a close 
association between krill and the pack ice-edge. Although the neat-ice zone is an area 
of relatively cold water, there are indications that it is characterized by enhanced pro­
ductivity (EL-SAYED and TAGUCHI, 1981; SMITH and N ELSON, 1985). A higher incidence 
of krill would therefore be expected near to the ice and this has often been reported 
(EVERSON, 1977). Comparatively high primary productivity (ALLANSON, 1985) near the 
continental margin and a clear separation between the krill-poor north strata and the 
krill-rich south strata confirms the more widespread affiliation of krill to the near-ice 
zone during the present survey. 

Oceanographic observations showed a gentle north-south shoaling of density iso­
pycnals towards 64°40'S (BRUNDRIT, 1985); a position relatively close to the 0°C isotherm. 
On most legs, this feature coincided with the disappearance of winter water from the 
north and the appearance of a deep mixed layer to the south. This zone of apparent 
mid water upwelling was indicative of the "Antarctic Divergence", which is well devel­
oped in the region 55-85°£ (KHIMITSA, 1976). It may also provide a marginal boundary 
to higher krill abundances observed in the south. VoRONINA ( 1968) has hypothesised 
that the Antarctic Divergence limits the northern extremity of high zooplankton 
abundances close to the Antarctic continent, and this is supported by the distribution 
of Japanese commercial krill catches in the present survey region (NAsu, 1983). In 
combination with the above observations and with those reported by MARR ( 1962), the 
current results support a concentration of krill in the productive East Wind Drift zone. 
For this reason, it is imperative that future work should seriously consider the effects of 
bio-oceanographic variability on krill caused by the presence of well developed frontal 
features like the Divergence. This would seem to be particularly important in the 
region 52-65°£ where, as already mentioned, the Divergence is well developed (KHIMITSA, 
1976 ; NASU, 1983). 

Catch length frequency distributions indicate three year classes. These comprised 
a Y ear- l class (MAUCHLINE and FISHER, 1969) smaller than 22 mm which, according 
to MARR (1962), would result from an early summer spawning. If animals were con­
fined to the East Wind Drift then it seems logical to assume that recruitment to the pre­
sent survey area originates in the east. Similarly, the presence of a sub-adult (Y ear-2) 
year class ( ca. 23-40 mm) would also be indicative of immigration from farther east 
(i.e. upstream). If, as MACKINTOSH (1973) and LUBIMOVA et al. (1980) propose, hy-
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drological mechanisms concentrate krill in the Enderby-Kerguelen basin, then Year-2 
animals would provide the following summer's spawning stock for a greater part of the 
area 50-85°E. 

The presence of sexually mature animals (Y ear-3 ; > 40 mm) provides evidence for 
krill spawning in the region, although a low incidence of reproductively active animals 
(male stage 38 and female stages 3C-3E) indicates that it may occur at relatively low 
levels. Regional spawning activity is confirmed to some extent by the apparent body 
length/maturity stage disassociation observed at Stn. 12. Recent work (PoLECK and 
DENYS, 1982 ; ETTERSHANK, 1983) has shown that female krill may revert to an imma­
ture sub-adult phase (Stage 28) on cessation of spawning activity. The presence of 
large, immature females could therefore indicate that spawning had in fact taken place 
shortly before commencement of the survey. 

Knowledge of larval development times (Ross and QuETIN, 1983) and the presence 
of early larval stages (calyptopis and early furcilia) indicate that spawning activity 
occurred in the survey area during late January or early February. Published results 
show that krill may spawn any time between November and April depending on hy­
drological conditions (e.g. FRASER, 1936 ; MARR, 1962 ; MACKINTOSH, 1972 ; HEMPEL, 
1982). Consequently the time of maximal spawning activity may vary considerably 
from year to year (RAKUSA-SuszczEWSKI, I 984). Projected spawning times of krill 
in the survey area therefore fall well within accepted limits. 

Compared with other areas of the Antarctic (KITTEL and JAZDZEWSKI ,  1982 ; HEMPEL, 
1983 ; RAKUSA-S uszczEWSKI , I 984) the absolute abundance of krill larvae was low. 
Despite widespread temporal variations in maximal spawning activity reported above, 
the relative late seasonal cover (March-April) of the present survey seems the most logical 
explanation for low larval abundances encountered. Also compared with similar surveys 
elsewhere (HEMPEL et al. , 1979 ; HEMPEL and HEMPEL, I 982 ; KITTEL and JAZDZEWSKI, 
1982 ; RAKUSA-SuszczEWSKI, 1984), the inter-station variabil ity of larval catches was 
low. Two explanations can be offered for this observation. 

MACKINTOSH ( I  972) and others (e.g. VoRONINA,  1974 ; EVERSON, 1977 ; MAKAROY, 
1983) have suggested that spawning probably occurs throughout most of the adult dis­
tributional range. In the present survey area, widespread spawning would have the 
ultimate effect of evenly distributing larvae over a wide area and in the low abundances 
observed. 

The second explanation presupposes a strong interaction between water circulation 
and larval dispersal. RAKUSA-SuszczEWSKI ( 1984) has shown that krill larvae are 
more widely distributed than adults, the latter being primarily confined to nearshore 
waters. Similarly, BRINTON and TOWNSEND ( 1984) have shown that krill larvae are 
more susceptible to effects of oceanic circulation than adults. Assuming circulation 
in the survey area not to be conducive to concentration of larvae then the observed 
lack of strata! differences in larval catches would substantiate widespread larval dis­
persion. Taking this argument further, BoGDANOY et al. (1980) maintain that, in some 
areas, early stage krill larvae are carried northward away from the continental edge 
by deep-water currents and tend to be most heavily concentrated near the Divergence. 
In the Prydz Bay region, water circulation north of the Divergence is characterized by 
a predominantly eastward flow, while between the Divergence and the continental rise it 
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comprises a series of broken eddies flowing westward (SMITH et al. , 1984). Young 
larvae, originally concentrated near the Divergence, would thus be dispersed to the east, 
north of the Divergence, and to the west in the south. Consequently later larval stages 
would be quite widely dispersed (as observed); th� extent of horizontal dispersion de­
pending on topographical interactions, dynamic topography and wind induced effects. 
Rather than being confined to high latitudes, larvae could therefore be dispersed far to 
the north (A:rv1os, 1984) and would be effectively removed from the system if unable to 
return to the productive East Wind Drift. 

Both the above explanations account for an absence of lo:alizd larval c oncentra­
tions. An additional factor, however, must also be considered. At present there is 
no way of ascertaining to what extent predation (either by other groups and/or by adult 
krill) may affect late-stage larval distribution and abundance. An absence of concen­
trated spawning activity in any one locality would not only serve to disperse larvae but 
may also preclude any significant benefits offered against elective predation by con­
centration of larvae in high numbers (ANTEZANA and RAY, 1983) or by transport away 
from areas of high adult abundances (MAKAROV, 1983). This may constitute an addi­
tional factor affecting both the proportion of larvae ultimately attaining recruitment 
age as well as their horizontal distribution. 

In accordance with the food-searching hypothesis proposed by HAMNER et al. 
(1983), and in view of the demonstrated ability of krill to migrate considerable distances 
(KANDA et al. , 1982), adult krill appear more capable of overcoming circulatory effects 
than larvae so congregating in areas of enhanced food availability (e.g. in the East Wind 
Drift or near-ice zone). Adult krill would also therefore be expected to exhibit rather 
more patchy distribution than larvae; particularly if water circulation favoured dis­
persion of the latter. Unfortunately, a lack of suitable data precludes further discussion. 
However, since most krill larval studies have been confined to the western Atlantic, 
the present results should provide a useful basis for comparison. 

Other than the apparent boundary effect of the Antarctic Divergence to the north­
erly distribution of post-larvae, the survey provided little direct oceanographic evidence 
to suggest that local water circulation patterns concentrate krill in the survey region. 
This was confirmed by the relatively low abundances of adult animals encountered. 
Furthermore, low larval abundances and a hydrological regime that favours larval 
dispersion would effectively preclude substantial regional re:ruitment. This would not 
favour the existence of a persistently localized krill stock ; an observation supported by 
IKEDA (personal communication). Similarly, an Australian survey undertaken earlier 
in the summer of 1984 also encountered low abundances of krill larvae in the area 
58-73 °E (Hosrn and KIRKWOOD, 1986). 

It seems probable, therefore, that both the high krill abundances (HAMPTON, 1983) 
and water circulation patterns (LUBIMOVA et al., 1980 ; SMITH et al., 1984) previously 
described as a feature of the region as a whole may be rather more ephemeral and 
localized than hitherto thought. Resynthesis of FIBEX acoustic results has revealed 
that areal estimates of high krill abundance may in fact be biased by extremely patchy 
distribution and by artifacts induced through survey stratal selection procedures 
(ANONYMOUS, 1985). By inference therefore, it would appear that both krill distribu­
tion and hydrological effects exhibit a far greater geographical and seasonal variation 
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in the area 52-64°E than previously appreciated. Consequently considerably more data 
are required before the effects of water dynamics on krill distribution in the Prydz Bay 
region can be confidently outlined. 
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