昭和基地の自然エネルギー棟に設置した空気式太陽熱集熱システムの検証報告

〇 安部 剛

(錢高組)

石鍋 雄一郎 (日本大学)

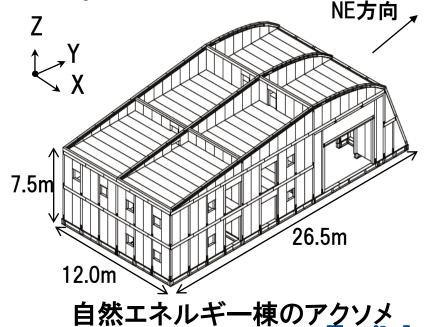
半貫 敏夫 (日本大学)

永木 毅 (国立極地研究所)

2 研究背景

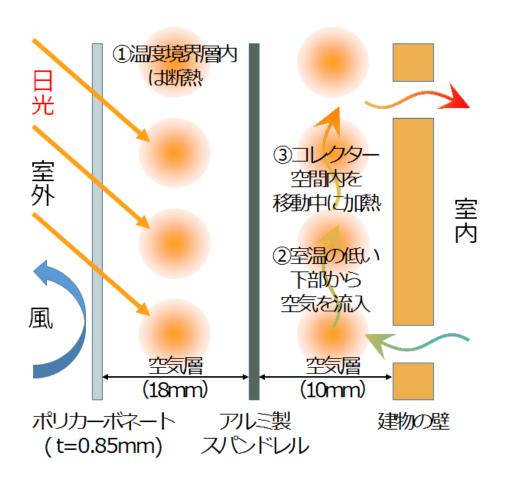
南極昭和基地(以下、昭和基地と呼ぶ)の主要エネルギー源は極寒冷地向け特別仕様の軽油である。年1回、南極観測船「しらせ」で観測隊員及び観測用資材と共に輸送するシステムだが、この燃料の占める割合は全物資量の約60%に相当する。

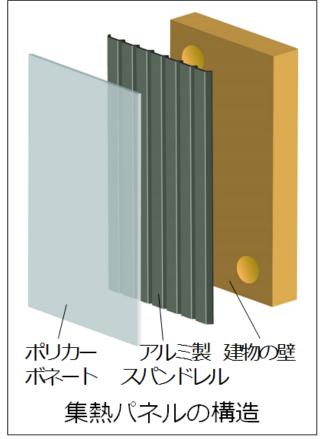
昭和基地沖の海氷状況によっては「しらせ」が接 岸出来ないこともあり、南極観測に必要なエネルギ 一源の安定的な備蓄・供給のためには、太陽光、 風力等の再生可能エネルギーの積極的な導入が 求められている。


2016年度と2017年度の報告

2016年度の報告では、室内の温熱解析に必要なデータを整理した。また、建物各面の全天日射量と相当外気温度を報告した。

2017年度の報告では、自然エネルギー棟で採用した省エネ環境技術を紹介する共に、室内温熱解析を行い実測値との比較を報告した。

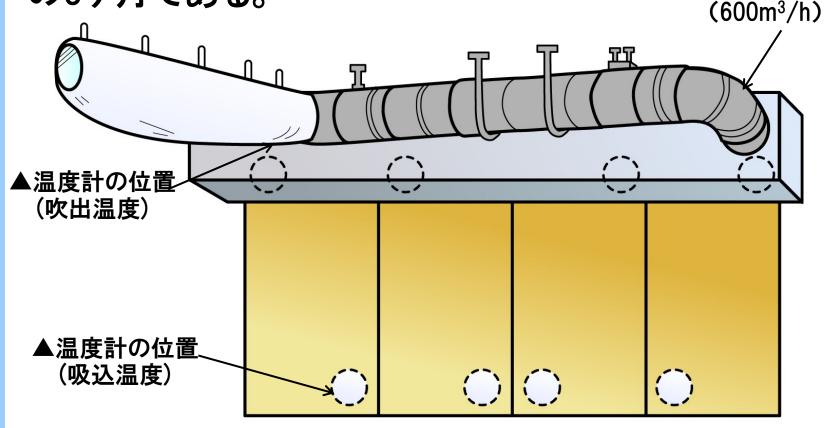

自然エネルギー棟

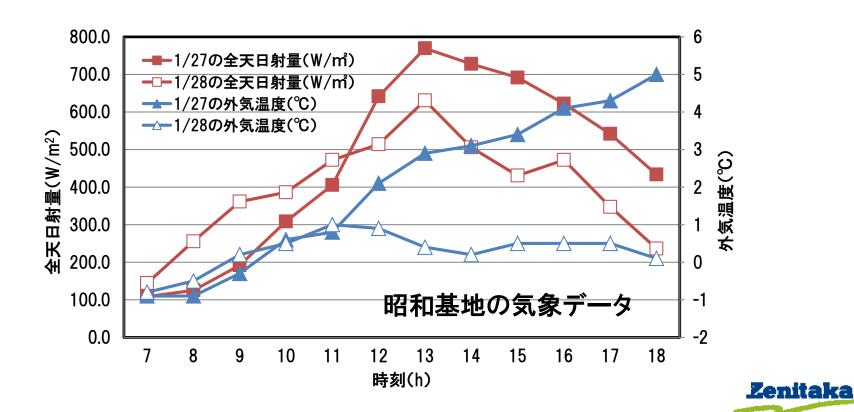


本報では、気象データと実測した温度結果を 用いて、自然エネルギー棟に設置した空気式 太陽熱集熱システムについて検証したので報 告する。

自然エネルギー棟で採用した集熱システム①

空気式太陽熱集熱パネル(北面外壁:24枚,71m²、 西面外壁:48枚,136.6m²)が取り付けられている。




自然エネルギー棟で採用した集熱システム②

4枚のパネルを1ユニットとして、太陽熱で暖められた空気を室内に取り入れている。

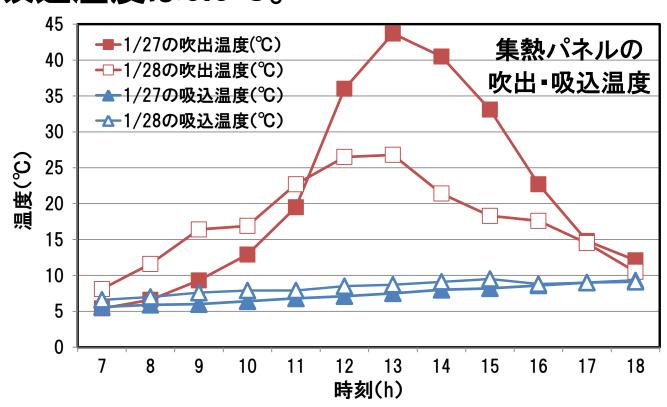
7 昭和基地の気象【全天日射量と外気温度】

2018年1月27日:天候は晴れ、7時~18時までの平均気温は2.0℃で、12時の全天日射量は、641.7W/m²。 2018年1月28日:天候は晴れ、7時~18時までの平均気温は0.3℃で、12時の全天日射量は、513.9W/m²。

昭和基地の気象【風向・風速】

2018年1月27日:7時~18時までの平均風速は3.8m/sで、主風向は南風向であった。 2018年1月28日:7時~18時までの平均風速は8.7m/sで、主風向は北東風向であった。

2018年1月27日	7時	8時	9時	10時	11時	12時
風速(m/s)	4.4	0.5	3.9	3	4.8	4.7
風向	北北東	北	南南東	南	南	南
	13時	14時	15時	16時	17時	18時
<u>風速(m/s)</u>	5	4.7	4.4	4.7	3.9	1.7
風向	南	南	南	南	南	南東
2018年1月28日	7時	8時	9時	10時	11時	12時
風速(m/s)	5.5	6.5	9.9	9.9	10.7	7.8
風向	北北東	北東	東北東	北東	東北東	北東
	13時	14時	15時	16時	17時	18時
風速(m/s)	8.4	8.2	10.4	9.3	9.1	8.9
風向	北東	北東	北東	北東	北東	北東



吹出・吸込温度の実測結果

【北面の太陽熱集熱パネルで温度実測】

2018年1月27日12時:吹出温度は36℃で、吸込温度は7.1℃。

2018年1月28日12時:吹出温度は26.5℃で、吸込温度は8.5℃。

10 太陽熱集熱効率と建物各面の全天日射量①

集熱効率=0.34×給気量×(吹出温度-吸込温度)/{全天日射量×集熱面積}

各面の全天日射量(12時,快晴の場合)

	水平面	東面	西面	南面	北面
2018年1月27日 全天日射量(W/m²)	750.4	41.2	41.2	41.2	1095.2
2018年1月28日 全天日射量(W/m ²)	745.4	41.2	41.2	41.2	1094.4

気象データに基づく各面の全天日射量(12時)

	水平面	東面	西面	南面	北面
2018年1月27日 全天日射量(W/m²)	641.7	35.3	35.3	35.3	936.6
2018年1月28日 全天日射量(W/m ²)	513.9	28.4	28.4	28.4	754.5

11 太陽熱集熱効率と建物各面の全天日射量②

【計算条件】

空気式太陽熱集熱システムの面積:12m²

ファン風量:600m³/h

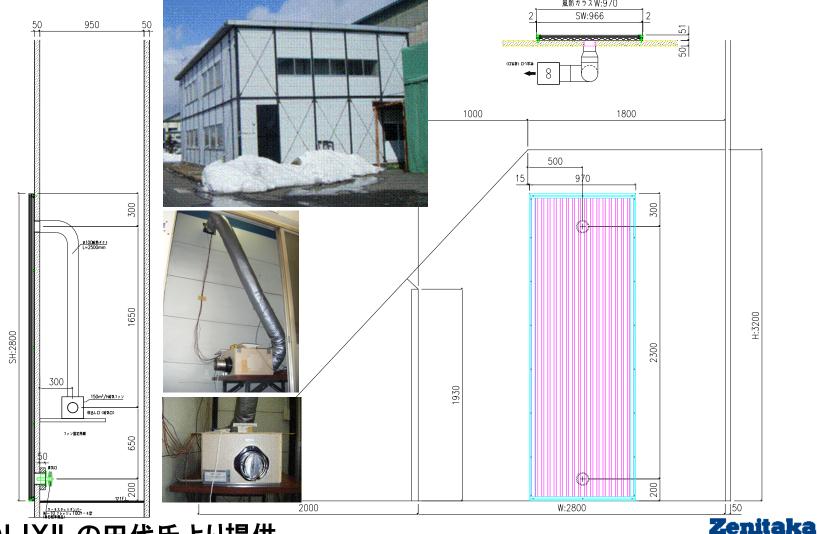
北面全天日射量(27日12時):936.6W/m²

北面全天日射量(28日12時):754.5W/m²

吹出温度一吸込温度の差(27日12時):28.9℃

吹出温度一吸込温度の差(28日12時):18℃

【集熱効率の計算】


集熱効率(27日12時):0.52

集熱効率(28日12時):0.41

12 太陽熱集熱パネルの実証実験①

実証実験の場所:北海道苫小牧市 集熱面積:2.72m²、ファン風量:90m³/h

(株)LIXILの田代氏より提供

太陽熱集熱パネルの実証実験②

太陽熱集熱パネルの集熱効率について

実証実験日:2009年3月8日 天気:晴れ

集熱時間	平均 外気温	平均 入口温度	平均 集熱温度	平均fan 集熱温度	出口-入口 ⊿ T	fan−出口 ⊿ T	壁面積算 日射量	照射積算 日射量	積算 集熱量	集熱効率	平均風速 (気象庁)
時	°C	°C	လိ	°C	°C	°C	W/m²	W	W	-	m/s
06-07時	-2.8	-1.4	2.3	3.6	3.6	1.4	27	72	0	0.00	_
07-08時	-1.9	0.7	4.1	4.0	3.5	-0.1	76	206	0	0.00	_
08-09時	0.5	6.9	29.7	27.0	22.7	-2.7	717	1,950	623	0.32	5.36
09-10時	1.7	13.3	56.3	52 .6	43.1	-3.7	906	2,463	1,121	0.46	4.74
10-11時	2 .1	14.8	62.4	58.4	47.6	-4.0	885	2,408	1,217	0.51	4.83
11-12時	3.0	16.9	59.1	55.7	42.2	-3.4	788	2,142	1,089	0.51	2.75
12-13時	4.3	19.7	53.5	50.6	33.8	-2.8	665	1,810	887	0.49	4.70
13-14時	3.9	19.8	40.9	39.3	21.1	-1.6	516	1,402	575	0.41	5.64
14-15時	4.3	18.4	27.4	26.9	9.0	-0.5	334	909	256	0.28	6.49
15-16時	4.7	17.2	17.2	17.7	0.0	0.4	156	425	0	0.00	_
16-17時	3.7	15.5	10.8	11.6	-4.8	8.0	63	172	0	0.00	_
17-18時	1.5	9.0	10.9	12.7	1.9	1.7	7	18	0	0.00	_
06-18積算	-	_	-	_	_	_	5,139	13,978	5,769	0.41	_

14 考察

【北海道苫小牧市での実証実験より】

実証場所:北海道苫小牧市

実証日時:2009年3月8日

集熱パネルの向き:南向き

風速:4.4m/s、風向:西北西、外気温度:4.4℃

南面の全天日射量: 726.5W/m²

集熱効率:0.5

【考察】

- -2018年1月27日12時の集熱効率とは、苫小牧での実証実験と同程度。
- -2018年1月28日12時の集熱効率は、風速や外気温度が苫小牧とは異なっているため、2割程低減したことが考えられる。 Zenitaka

15 まとめ

自然エネルギー棟に設置した空気式太陽熱集熱 システムについて、以下にまとめる。

- ①日射が期待される1月において、吹出・吸込温度の実測結果を整理した。
- ②気象データ(全天日射量)と実測した吹出・吸込温度を用いて、昭和基地での集熱効率を求めた。
- ③集熱効率は、日本と昭和基地での実測結果を 比較すると同程度の結果が得られた。

ただし、昭和基地では、風速や外気温度の気象条件が、日本とは異なるため、集熱効率の低減をある程度見込む必要がある。

16 今後について

今回計測した1月の1週間という短い期間では、空気式太陽熱集熱システムの詳細な検証を行う事が出来ず、詳細な検証を行うためには、昭和基地で日射が期待できる10月~2月までの5カ月間連続して吹出・吸込温度の計測を継続して行っていく必要がある。

そのため今後は5カ月間連続して計測を実施する と共に、風速や外気温度などの気象条件との関係 性を明確にしていく予定です。

