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Abstract: Vertical winds in the lower thermosphere are estimated from OI //1.1-nm
Doppler shifts obtained with a Fabry-Perot interferometer at the Poker Flat Research

Range (0/.+,N, +.1..-W in geographic coordinate), Alaska. The temporal variation

of vertical winds was compared with the horizontal component of the magnetic field

obtained at Poker Flat and two other sites, Gakona (0,.+,N, +./.+.W) and Fort

Yukon (00.-0N, +./.,,W). Two nights of observations were examined and the

results were shown here. The results showed that temporal variations of vertical

winds were similar to that of magnetic field variation during each substorm. In some

cases the results of cross correlation between these two parameters showed that the

magnetic field perturbation leads vertical winds in the earlier period of the substorm.

The di#erence increased gradually and reached a maximum at around the center of the

recovery phase. From there, the di#erences decreased. The mechanism for the

relation between the two parameters is still unclear, but this result suggests an intimate

relation between ionospheric currents and vertical wind in the thermosphere.

key words: thermosphere, neutral winds, ionospheric currents, E-region

+. Introduction

The work presented in this report is the first step in a study that is being undertaken

to find ways of distinguishing the vertical winds generated by Joule heating from other

types of vertical wind. In this first step, vertical winds as deduced from Fabry-Perot

interferometer observations were compared with the DH-component of magnetic field

on the ground. Similar studies could be found in previous publications. For example,

Rees et al. (+32.) showed some examples of the relation between the vertical winds in

the F-region and magnetic perturbation, e.g., westward traveling surge and positive bay.

The results showed that very large upward vertical winds (/*�,**m/s) appeared in the

sub-storm expansion phase or westward traveling surge. Their duration time was

generally short (+*�-*min) and they were often temporally and spatially surrounded by
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weak downward flow sector. Peteherych et al. (+32-) also showed the comparison
between the vertical winds in the E-region and magnetic perturbations. Their results

showed that the upward winds were associated with westward overhead currents, and

with low altitude aurora (�++* km) as determined by the auroral temperature, while a
high altitude aurora (�+-/ km) and eastward currents were associated with the down-
ward wind.

In this study, vertical winds measured with the Communications Research

Laboratory’s Fabry-Perot Interferometers (CRLFPI) OI //1.1 nm at Poker Flat Re-

search Range, Alaska were compared with the DH-component of the magnetic field

obtained at - magnetometer sites in Alaska. An advantage of our study is that the

relationships can be seen more clearly with the high temporal resolution of our FPI

observations (,min) and continuous measurements of zenith direction. In most cases

vertical winds are considered very small magnitude (�several ten m/s) which is

comparable with FPI’s nominal error (�+*m/s, e.g., Price et al., +33/). The cross-

correlation is calculated using the least square fitting to determine regression line (y�ax

�b), If there is a constant o#set on the vertical wind, the constant “b” will be influenced
significantly but the constant “a” and the correlation coe$cient does not change.
Therefore this nominal error does not make fatal influence in the analysis. In order to

use our results more precisely, we compared CRLFPI results with another instrument,

Geophysical Institute-Scanning Doppler Imager (GI-SDI; Conde and Smith, +332).
These two instruments were installed at the same place. The GI-SDI mainly observes

horizontal distribution of neutral winds with vertical winds on the zenith direction.

We judged the vertical wind true when two instruments observed similar feature of

winds simultaneously. In addition to qualitative comparisons, cross correlation was

also calculated for more detailed investigation.

The peak altitude of //1.1 nm emission layer is about ++*�+.* km, and it signifi-
cantly depends on the precipitating electron energy. It makes very di$cult to use //1.1
nm emissions to estimate horizontal wind, because there are very large wind sheer

around these heights and the uncertainty of the altitude of emission layer brings a fatal

problem. On the other hand, the e#ect of horizontal wind sheer becomes very small for
deducing vertical winds. In some previous studies (e.g., Peteherych et al., +32/; Price
and Jacka, +33+; Price et al., +33/) discuss vertical winds using //1.1 nm observations.

,. Instrumentation and observations

The CRLFPI project operates two types of FPIs, one with a narrow field of view

and the other with a wide field of view (details of these instrument was described in Ishii

et al., +331). The narrow field-of-view FPI (scanning FPI) was installed at Poker Flat,

Alaska throughout September +332.
A one-night average of vertical wind measurement is used to determine the zero

Doppler shift, keeping in mind the possibility of a constant o#set in wind velocity.
When the observed aurora was too bright, the recorded fringes saturate; this can lead to

overestimation of temperature and large errors in velocity. The maximum number of

counts in two minutes is +.,*0�+*0 so we do not use fringe images with peaks greater

than +.+*�+*0 counts in deducing the temperature and velocity.
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The magnetometer used here (The Geophysical Institute Magnetometer Array) is

a basic fluxgate design using a triaxial set of cores (Narod ring-core magnetometer,

Narod Geophysics Lt., Canada). Figure + shows the location of the three ob-

servatories at which the geomagnetic field was recorded; Poker Flat (0/.+,N, +.1..-
W), Gakona (0,.+,W, +./.+.W) and Fort Yukon (00./0N, +./.,,W). The magne-

tometer electronics are controlled by an S-+** computer that uses internal calibrations
to produce digital output in units of nano Tesla. The nominal data rate is 2 samples per
second and + sec-average data were provided for this study. The long-term drift is less

than +* pT/day. The noise level is 1 pT/�Hz at + Hz. The error in orthogonality is

less than *.+ degree. For a reference of aurora location, the Meridian scanning

Photometer (MSP) observations at OI //1.1 nm are also shown.

-. Results

Two nights of observation (Nov. ,/, +332 and Feb. ++, +333) were selected for
analysis from a total dataset of observation during 2- nights. The criteria for selection

were, (+) magnetometer data at PFRR were available, (,) clear sky (All-sky camera
image and data from the Meridional Scanning Photometer (MSP) were used to check

the weather condition) and (-) the GI-SDI (Geophysical Institute Scanning Doppler
Imager) instrument described in Conde and Smith (+332)), was operated simulta-

neously with CRLFPI. The reason was described in the introduction session. Both

the GI-SDI and CRLFPI observes OI 0-*.* nm Doppler shift on zenith and the

observational quality of both could be evaluated by comparison of these results. It

should be noted that the results obtained in this study are for specific events and that a

larger dataset than we used will be required to demonstrate any general tendencies.

Fig. +. Locations of the observatories. The CRLFPI was operated at Poker Flat

Research Range. The magnetic field was measured at Fort Yukon, Gakona

and Poker Flat. This map is plotted with geographic coordinates.
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Some detailed analysis of the vertical wind on the basis of the same dataset was carried

out by Ishii et al. (,**+).
Cross correlations were also calculated as a supplement to qualitative comparisons

between the OI //1.1-nm vertical wind and the DH-component of the geomagnetic field

data. The correlation was calculated in a ,-hour window, which is a typical time scale
for magnetic substorms, and the phase lag was also calculated �+**min). Each data

set was binned in -min intervals for calculating the correlations.
Figure , shows the results for the first case, observed on November ,/, +332. The

upper panel shows vertical winds obtained with OI //1.1 nm (upward positive). The

lack of a plot for +,,*�+,-*UT and +-+/�+--*UT is due to fringe saturation that was
associated with auroral expansion. The second panel shows the magnetic perturba-

tions. In this case magnetometer data from two sites, Poker Flat (red) and Gakona

(blue), were available. The third panel shows MSP results. The last panel shows the

cross correlation between the vertical winds and magnetic perturbations with time delay

taken into consideration. The vertical axis shows the time lag and the color code shows

the correlation coe$cients.
Significant downward flows can be seen during ++**�++/*UT. It turned upward

in short period and downward flow was seen again from +,-* to +.-*UT. The

amplitude of the magnetic perturbations was greater at Poker Flat than at Gakona,

which indicates that Poker Flat was closer to the center of ionospheric current than

Gakona. The DH-component at Poker Flat began to decrease from +*-*UT. It

recovered on +,**UT, but auroral on-set came soon after. This perturbation

recovered by +--*UT. The overall pattern of magnetic variation is qualitatively

similar to that of vertical wind. but a notable di#erence is that the downward flow
maintains its magnitude during the recovery phase (+--*UT) and its recovery to zero
level is delayed from that of the magnetic field by about + hour. The MSP results

showed a bright auroral arc appeared at around ++**UT. It moved southward until

+,-*UT. This movement of the auroral arc corresponded to an upward flow in the

vertical wind data and temporal recovery of the magnetic field at around +,**UT.
After the expansion at +,-*UT, a bright and broad aurora moved northward.

With a time-lag of zero, the correlation was fairly strong from *2-* to ++**UT,
which is the growth phase of the substorm. In the recovery phase however, the

wind-DH relation is rather anti-correlated. A significant feature of the correlation

diagram is the “V-shaped” structure that bottoms-out at around +-**UT. This means

that this was the period of greatest time lag of vertical wind relative to the magnetic

field, i.e., that this is the end of the recovery phase.

Figure - shows the results for a second case (February ++, +333). The format for

the figure is same as was used for Fig. ,. Magnetic field data from the Poker Flat and

Fort Yukon observatories were available.

There were three significant features over this period. The first one can be seen

between *0** and *1**UT. Over that period, the vertical wind and magnetic pertur-

bation clearly showed anti-correlated variation; acceleration of the vertical wind is

downward and the velocity changes from ,*m/s to �,*m/s, whereas the DH-

component increased �,** nT over this period. During the same period, the aurora

was located poleward of Poker Flat. Between *1** to *2**UT, sudden downward
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Fig. ,. Case +: November ,/, +332. A comparison of the vertical wind as deduced from the Doppler shift of

OI//1.1 nm with the CRLFPI (top panel), DH-component of the magnetic field (second panel) and

the temporal variation of OI//1.1 nm auroral location as obtained with the Meridian Scanning

Photometer (third panel). The bottom panel shows the correlation between the vertical wind and

magnetic variation as obtained at Poker Flat. The vertical axis indicates the time di#erence
(positive value: wind leading), and the degree of correlation is presented as the color code.
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flows occurred twice (��,*m/s) but there was no clearly corresponding variation in
the magnetic field. The second significant feature is visible between +*** and +*./UT.
The downward acceleration of the vertical wind in this period is clearly visible, but the

level of magnetic perturbation was quite low (�/* nT). The MSP results showed that

Fig. -. Case ,: February ++, +333. Format is same as Fig. ,.
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there was a narrow but bright aurora arc above the observatory.

The third significant event is the substorm that appeared at about ++,*UT.

Variations in the vertical wind and magnetic perturbation were similar during this

period. When the decrease in magnetic perturbation is at around �.** nT, the down-

ward vertical wind is around�.*m/s. The phase di#erence between the two features

varies over time and a similar (but less well-defined) ‘V-shaped’ structure to that seen in

case + appears in the correlation contour. The maximum phase di#erence is at around

+,**UT, with �+*min of wind lag.

We used 2--night dataset and found .- events of vertical wind which is large

enough to distinguish from observational errors in +0 nights (,0 events of upward and

+1 of downward wind). Seven of the +0 nights have a similar tendency in the relation

between the vertical wind and the H-component of magnetic field on the ground.

Although there are not quantitatively high correlations, four of the other nine nights

have some variations in the vertical wind velocity when the magnetic field fluctuated.

Other four nights have no correlation between them.

.. Discussions

In some cases vertical wind variations appear highly correlated with magnetic field

perturbations. In particular they behaved in a similar way during substorms (Case +:
++**�+.**UT; Case ,: ++-*�+.**UT), though the relation between the two was not

always linear. In a quantitative analysis, the phase di#erence between the vertical

winds and magnetic field increases during the growth phase and reaches maximum

during onset and the recovery phase. After that the time di#erence gradually de-

creases. It is an attractive idea that these vertical winds are generated by Joule heating

associated with ionospheric currents, and that these currents lead to the magnetic

perturbations, too. However, there are some di$culties with this idea: in the first place,

while vertical winds in the thermosphere are thought to be relatively local in many cases,

whereas a magnetic perturbation is the result of ionospheric currents in a large region

(�+** km�+** km). Secondly, Joule heating is mostly caused by the Pedersen cur-

rent, whereas the magnetic perturbations on the ground are generated by Hall currents.

Furthermore, the mechanism for the induction of downward acceleration by heating is

not yet clear. If Joule heating were the main source of the vertical winds examined

here, the magnitude of the wind should have corresponded to the absolute values of the

magnetic perturbations, because the rate of Joule heating must not be dependent on the

directions of ionospheric current i.e., the signatures of magnetic perturbations).

In relation to the first issue, Price et al. (+33/) estimate that the horizontal area of

vertical wind is less than +0* km at the height of the OI //1.1 nm emission layer. The

geomagnetic field is thought to be influenced by the ionospheric current across an area

with a radius of several-hundred kilometers of radius, because the nearest current is

�+**-km distant i.e., the current flowing above the observatory). This is considerably

larger than the vertical wind area shown in Price et al. (+33/), which means that some

Joule-heating events with horizontally small scales can generate vertical winds without

having an e#ect in terms of geomagnetic perturbations. The event shown +***�+*./
UT of case , may be an example of this process. During this period, some bright but
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relatively small auroral arcs were located around the zenith of the observatory.

Another idea, which seems more plausible, is that the variation in the auroral arc’s

location creates both the vertical winds and magnetic perturbations. Crickmore et al.

(+33+) indicated that downward winds are often observed equatorward of the auroral
oval, and some other studies (Price et al., +33/; Innis et al., +330, +331) have mentioned
that upward flows are often found poleward of the poleward edge of auroral oval. If

the vertical wind distributions are fixed on the auroral oval, the high degree of

correlation between the vertical wind and magnetic perturbation should be observable

from a single observatory with the motion of the auroral arc.

These results suggest that there is an intimate relation between ionospheric currents

and neutral dynamics in the lower-thermosphere, although the details of this relation

have yet to be revealed. The cases we examined have shown that the proportionality

coe$cient is not nearly constant with time, even if the variation is similar. As the next

step, we need to determine if there is any quantitative relation between the two

phenomena.

Another approach would be to deduce the locations of ionospheric currents by

using geomagnetic field datasets observed at multiple sites. Luhr et al. (+33.) es-
timated the dominant ionospheric current from magnetic observations obtained at

Scandinavian magnetometer chain. By applying the same method, we hope to obtain

information on the locations of ionospheric currents as well as the locations of aurora as

obtained by using MSP.

/. Concluding remarks

We deduced vertical winds in the lower thermosphere from OI //1.1 nm Doppler

shifts as measured with a Fabry-Perot interferometer at the Poker Flat Research Range,

Alaska. The deduced vertical winds were compared with the DH-component of

geomagnetic field in the vicinity of the observatory and at Gakona and Fort Yukon.

Four nights of observation were examined in this study and two nights of results have

been discussed. Temporal variations in the vertical wind (positive upward) were often

similar to variations in the magnetic field during substorms. The phase di#erences
between two parameters also varied over time: In growth phase, the magnetic-field

variation gradually and increasingly led the changes in the vertical wind and this

di#erence reached a maximum at around the center of the recovery phase. After that,

the di#erence gradually decreased. On the other hand, a clear anti-correlation between

the two parameters was seen in one period (case ,; *0**�*1**UT) and a large vertical
wind event that did not correspond to magnetic-field variations was seen in another

(case ,; +***�++**UT). The mechanism of the relation between the two phenomena

is still unclear, but this result suggests that there is some intimate relation between

ionospheric currents and thermospheric vertical winds.

Acknowledgments

We thank June Pelehowski for supporting the operation of the Fabry-Perot

interferometers, Meridian Scanning Photometer, and the observatory at Poker Flat.

M. Ishii et al.144



This study has been supported in part by the U.S.-Japan International Research Project

to observe the middle atmosphere, CRL, the Ministry of Posts and Telecommunications,

Japan.

The editor thanks Dr. T. Ogawa and another referee for their help in evaluating this

paper.

References

Conde, M. and Smith, R.W. (+332): Spatial structure in the thermospheric horizontal wind above Poker Flat,
Alaska, during solar minimum. J. Geophys. Res., +*-, 3..3�3.1+.

Crickmore, R.I., Dudeney, J.R. and Rodger, A.S. (+33+): Vertical thermospheric winds at the equatorward
edge of the auroral oval. J. Atmos. Terr. Phys., /-, .2/�.3,.

Innis, J.L., Greet, R.A. and Dyson, P.L. (+330): Fabry-Perot spectrometer observations of the auroral oval/
polar cap boundary above Mawson, Antarctica. J. Atmos. Terr. Phys., /2, +31-�+322.

Innis, J.L., Dyson, P.L. and Greet, P.A. (+331): Further observations of the thermospheric vertical wind at
the auroral oval/polar cap boundary above Mawson station, Antarctica. J. Atmos. Terr. Phys., /3,
,**3�,*,,.

Ishii, M., Okano, S., Sagawa E., Watari, S., Mori, H., Iwamoto, I. and Murayama, Y. (+331): Development
of Fabry-Perot interferometers for airglow observations. Proc. NIPR Symp. Upper Atmos. Phys.,

+*, 31�+*2.
Ishii, M., Conde, M., Smith, R.W., Krynicki, M., Sagawa, E. and Watari, S. (,**+): Vertical wind

observations with two Fabry-Perot interferometers at Poker Flat, Alaska. J. Geophys. Res., +*0,
+*/-1�+*//+.

Luhr, H., Geisler, H. and Schlegel, K. (+33.): Current density models of the eastward electrojet derived from
ground-based magnetic field and radar measurements. J. Atmos. Terr. Phys., /0, 2+�3+.

Peteherych, S., Shepherd, G.G. and Walker, J.K. (+32/): Observation of vertical E-region neutral winds in

two intense auroral arcs. Planet. Space Sci., --, 203�21-.
Price, G.D. and Jacka, F. (+33+): The influence of geomagnetic activity on the upper mesosphere/lower

thermosphere in the auroral zone. I. Vertical winds. J. Atmos. Terr. Phys., /-, 3*3�3,,.
Price, G.D., Smith, R.W. and Hernandez, G. (+33/): Simultaneous measurements of large vertical winds in

the upper and lower thermosphere. J. Atmos. Terr. Phys., /1, 0-+�0.-.
Rees, D., Smith, R.W., Charleton, P. J., McCormac, F.G., Lloyd, N. and Steen, A. (+32.): The generation of

vertical winds and gravity waves at auroral latitudes - I. Observations of vertical winds. Planet. Space

Sci., -2, 001�02..
Smith, R.W. and Hernandez, G. (+33/): Vertical winds in the thermosphere within the polar cap. J. Atmos.

Terr. Phys., /1, 0++�0,*.

Comparison between vertical winds and magnetic field 145


