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Abstract: The first scientific campaign of the Polar Patrol Balloon (PPB) 
experiment ( !st-PPB) was performed at Syowa Station in Antarctica during 1990-
1991 and 1992-1993. Based on the fruitful results of the !st-PPB experiment, the 
next campaign (2nd-PPB) will be carried out in the austral summer of 2002-2003. 
This paper summarizes the 2nd-PPB experiment. Four balloons in total will be 
launched to make astrophysics observations ( 1 balloon) and upper atmosphere 
physics observations (3 balloons). The first payload will carry a very sophisti­
cated instrument that will observe primary cosmic-ray electrons in the energy range 

of 10 GeV-1 TeV. The payloads of the latter 3 flights are identical to each other. 
They will be launched in as rapid a succession as weather conditions permit to 

form a cluster of balloons during their flights. Such a "Balloon Cluster" is 
suitable for observing the temporal evolution and spatial distribution of various 

phenomena in the various magnetospheric and ionospheric regions and their 

boundaries that the balloons will traverse during their circumpolar trajectory. 

The expected flight duration of each balloon is 20 days. Observation data will 
be obtained mainly by a satellite communication system with a much higher 
temporal resolution than that used in the I st-PPB experiment. 

1. Introduction 

The "Polar Patrol Balloon (PPB)" experiment ts a project involving long-term 

observations in the Antarctica using stratospheric zero-pressure balloons and the stable 

circumpolar easterly wind that occurs during austral summer. A feasibility study and the 

development of the balloon technology for the PPB started in l 984 as a 5-year project of 

the upper atmosphere physics group at the National Institute of Polar Research (NIPR) in 

collaboration with the Institute of Space and Astronautical Science (!SAS) and nationwide 

scientists (Nagata et al., 1985; Nishimura et al., 1985). Two and one test flights of the 

PPB were carried out in 1987 and 1990 by the 28th and 30th Japanese Antarctic Research 

Expeditions (JARE), respectively, at Syowa Station in Antarctica. These test flights 
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confirmed the reliability of the predicted long-duration circumpolar trajectory and the 

effectiveness of the balloon technology for the PPB, including the flight altitude control 

(auto-ballasting) system, and the ARGOS satellite communication system (Kadokura et 

al., 1991; Kadokura, 1995; Ejiri et al., 1993; Yamanaka et al., 1988). After these 

preparatory phases, the first scientific campaign of the PPB ( I st-PPB) was performed during 

1990-1991 and 1992-1993 by JARE-32 and JARE-34, respectively (Fujii et al., 1989; Ejiri 

et al., 1995; Nishimura et al., 1994). A total 6 balloons (3 balloons per period) were 

launched in the !st-PPB to perform observations of the total force of the geomagnetic field 

(PPB-I), ionospheric and magnetospheric phenomena (PPB-2, 4, 5), atmospheric ozone and 

aerosol (PPB-3), and cosmic rays and auroral X-rays (PPB-6), respectively. A summary of 

the !st-PPB experiment is given in Table I, and the trajectories of the 6 balloons are shown 

in Fig. I. Observation data were obtained via the ARGOS system when the balloons 

exited the receiving range of Syowa Station. Twenty and forty ID numbers were assigned 

to one ARGOS transmitter to transfer the data obtained with a sampling rate of 16 and 32 

bytes/30 s in the 1990-1991 and 1992-1993 experiments, respectively. The details of the 

Multi-ID ARGOS transmitter system was described by Fujii et al. ( 1992). A geomagnetic 

anomaly arising from the earth's crust around Antarctica was thoroughly investigated using 

total force observations performed with a proton magnetometer onboard PPB-I, -2, -4 and 

-5 (Tohyama et al., 1993). Magnetospheric phenomena were observed using the instru­

ments onboard PPB-2, -4, -5 and -6 (Ebihara et al., 1996; Hirasima et al., 1999). Flight 

PPB-6 was particularly successful, allowing a thorough study of auroral X-ray phenomena 

(Kodama et al., 1995; Suzuki, 1996). Cosmic-ray protons were also observed during the 

PPB-6 flight (Yamagami et al., 1994). Observations of the ozone and aerosols in the 

Antarctic ozone hole were successfully performed by PPB-3 for the first time (Kanzawa and 

Kondo, 1991; Kanzawa et al., 1994; Hayashi et al., 1994). Despite such fruitful scientific 

Table I. An experimental summary of the /st-PPB campaign. 

PPB launching 
flight balloon payload ballast total control sampling 

date 
duration volume weight weight weight altitude rate observation item 

no 
(days) (X 103 m3) (kg) (kg) (kg) (km) 

Dec. 25, 1990 38 25 114.0 152 373.5 28 
16byte 

130sec 
total-B 

2 Jan. 05, 1991 30 32 191 .5 152 471.0 28 
16byte total-8, vector E-field 

130sec aurora X-ray 

3 Sep.23, 1991 6 5 161.8 145 370.3 18 
32byte 

ozone, aerosol 
/2min 

4 Dec.26, 1992 9 39.7 189.0 150 487.8 28 
32byte total-B, vector B 

130sec vector E, aurora X-ray 

5 Dec. 30, 1992 43 39.7 186.5 150 483.5 28 
32byte total-B, vector B 

130sec vector E, aurora X-ray 

6 Jan. 05, 1993 27 59.5 95.0 150 434.2 30 
32byte cosmic ray 

130sec (X-ray, proton) 
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Fig. I. Trajectories of the 6 balloons in the /st-PPB campaign. 
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and balloon technological results in the I st-PPB campaign, several objectives were not 

accomplished in the campaign, and the need for future experiments arose. The payload 

and balloon configurations of PPB-4 and PPB-5 were identical to each other to enable 

simultaneous observations at different local times. However, this objective was not fully 

accomplished because of failures in the altitude control systems of both balloons. 

Furthermore, the limited data acquisition rate of the Multi-ID ARGOS system was not 

sufficient for the observation of higher frequency phenomena, such as Pc3 or Pi2 pulsations, 

or for observations by more sophisticated instruments that required a larger amount of data 

to be transmitted. Scientific discussions for a future PPB experiment, based on the results 

of the !st-PPB, began in 1995. Several workshops for that purpose were held at NIPR in 

1995, 1997, and 1999. Eventually, the next PPB project (2nd-PPB) was scheduled as a 

3-year project to be performed during 2000-2003. In the following sections, the details of 

the 2nd-PPB project will be introduced. 
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2. Overview of the 2nd-PPB project 

The 3-year project will be conducted as follows: fabrication of the scientific payload 

for astrophysics observations in the 1st fiscal year (April 2000-March 2001), fabrication of 

the scientific payload for geophysics observations in the 2nd fiscal year (April 2001-March 

2002), and integration of the total systems for each observation, and launching the payloads 

at Syowa Station in Antaratica. in the 3rd fiscal year (April 2002-March 2003). 

The campaign in Antarctica will be performed during late December 2002 to January 

2003 by the 44th Japanese Antarctic Research Expedition (JARE-44). The primary 

launching window at Syowa Station is scheduled for the period from late December 2002 

to early January 2003, mainly because of the requirements for a perfect westward circumpo­

lar trajectory. After that period, the wind direction in the stratosphere gradually changes 

c; PPB 

C> HF-radar FOY 

Q ground station FOY above 20 deg 

-- Invariant latitude line 

0 

180 PI-P6: American AGO 
A 77-A84 : British AGO 

Fig. 2. Expected PPB trajectory. The contour of the equi-invariant latitude is shown by the 
gray curve. The location of ground stations, their FO Vs above 20' elevation 
projected at an altitude of 120 km, and the FOVs of the HF-radars in the 
Super DA RN network are also shown. 
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from easterly to westerly. One 100000 m1 zero-pressure balloon (BlOO) and three 50000 m' 

balloons (B50) will be launched during this period to perform astrophysical and geophysi­

cal observations, respectively. The flight altitudes will be controlled to within 35-40 km 

and 30-35 km for the astrophysical and geophysical observations, respectively, by the 

auto-ballasting system. The expected life time of each balloon is more than 20 days. The 

expected trajectory of the balloons is shown in Fig. 2. After their launch from Syowa 

Station, they will drift westward almost along the equi-geographic latitude line between 

-60" and - 70" around the Antarctica with a circumpolar period of about 2 weeks. Since 

the geomagnetic dipole axis is tilted from the rotation axis of the earth, they will traverse 

a large geomagnetic latitudinal range between 50" and 80" invariant latitude (ILA T), shown 

by the gray-encircled contour in Fig. 2. The location of the ground stations, their field of 

views (FOVs) above 20" elevation projected at an altitude of 120 km, and the FOVs of the 

HF-radars in the SuperDARN network (Greenwald et al., 1995) are also shown in Fig. 2. 

The balloons are expected to float within the FOVs of several ground stations and 

HF-radars during their circumpolar trajectory. Data will be downlinked via 64 kbps 

telemetry to several ground stations, including Syowa Station, and via a satellite data link 

system the Iridium satellite phone system, in which maximum transfer rate is 10 kbps. 

This transfer rate is about 2 orders of magnitude higher than the Multi-ID ARGOS system 

used in the !st-PPB campaign. Accurate time and balloon positions will be obtained 

using GPS (Global Positioning System). Some basic house-keeping data, including the 

GPS data, will be obtained via the ARGOS satellite system. 

The scientific payload for the astrophysical observations is an instrument for observing 

the primary cosmic-ray electrons in the energy range of IO GeV to I TeV; this instrument 

has been named as PPB-BETS (Balloon-borne Electron Telescope with Scintillating Fibers 

for the PPB experiment). The instrumentation and scientific purpose of the BETS has 

been briefly described by Torii et al. ( 1999, 2000). Five instruments will be installed in 

the balloon payloads for the geophysical observations: an EMW ( electromagnetic wave 

detector) to observe electromagnetic waves in the ULF to LF band range, an EFD (electric 

field detector) to observe the vector electric field, an MGF (magnetic field detector) to 

observe the vector geomagnetic field, an AXI (auroral X-ray imager) to observe auroral 

X-ray emissions, and a TEC (total electron content) to observe the total electron content 

of the ionosphere. The flight configurations for the astrophysical and geophysical obser­

vations are shown in Fig. 3a and 3b, respectively. The estimated payload weight, total 

ballast weight, total weight, and total lift with 1 1  % of free lift for the astrophysical and 

geophysical observations are 500, 230, 730, and 8 10 kg and 340, 160, 500, and 555 kg, 

respectively. Electric power for the instruments is mainly supplied by a solar battery 

system. Five solar panel units are installed on each surface of a gondola. The maximum 

power output from one unit is 45 W, so each surface supplies 225 W. Each balloon has 

a parachute. If the balloon moves back within the FOY of Syowa Station after the 

circumpolar trajectory, the payload will be cut-down by a command from the ground and 

the recovery of the payload will be attempted. For the geophysical observations, two loop 

antennae for the EMW are set around the balloon surface orthogonal to each other, and 

the received signals are processed by the EMW main instrument in the sub-gondola. The 

sub-gondola consists of the EMW instrument and a reel-down. Since the EFD must 

avoid electric interference from charges on the balloon surface, the main gondola will be 
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BIOO 

100,000 m' 

63 m$ 

230 kg 

total: 730 kg 

altitude: 35-40 km 

(b) 
B50 

50,000 m3 

50m$ 

160 kg 

2 loop antennae 

for EMW 

sub-gondola 

EMW 
reel-down 100 m 

rotation motor 
2 rpm 

total: 500 kg 

altitude: 30-35 km 

Fig. 3. Flight configurations for (a) astrophysical and (b) geophysical observations. 

located 100 m below the sub-gondola. The EMW data processed in the sub-gondola is 

transmitted to the main gondola 100 m below via an RF modem. For the observational 

requirements of the EFD and MGF, a motor will be used to rotate the main gondola at 

a steady rate of 2 rpm. In the following sections, further details of the scientific instru­

ments and scientific purposes of each type of observation will be described. 

3. Astrophysical observations 

Long-term observations by PPB are very useful for observing high-energy primary 

cosmic-ray electrons because the flux of these electrons is generally very small. The 

number of electrons expected to be observed during the 20-day PPB observation period is 

shown in Table 2. The statistical confidence of these observations should be increased by 

about I 00 times, compared with that of usual experiments that last for less than one day. 

The life time of cosmic-ray electrons in the Galaxy is very short because they rapidly lose 

their energy through synchrotron and inverse Compton processes as they travel. The 

number of electron sources whose electrons reach Earth decreases as the energy of the 

electrons increases; SNRs (supernova remnants) and pulsars are known candidates for 

high-energy electrons sources, and the expected energy spectrum can be predicted by 

assuming the diffusion parameters. Table 3, taken from Torii et al. ( 1999), lists such 

candidates, and Fig. 4 shows the expected energy spectrum (black lines) and observed 

values in previous experiments (symbols). The expected observation range and values of 
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Table 2 .  Expected number of cosmic-ray electrons in the 20-days PPB observation. 

Energy > IOGeV > IOOGeV > IOOOGeV 

electron number I.IX 10' 5.6x 10' 3 

Table 3. list of SNRs and pulsars as ca11didaters of nearby 
electrons sources (ojier Torii et al .. /999). 

SNR Pulsar 

SN 185 

S 147 

G 65.'.\+5.7 

Cygnu s Loop 

Vela 

Monogcm 

Loop I 

Geminga 

B 0833-45 

IE 0630-178 

Distance Age 

(kpc) (yr) 

0.95 1.8 X 10' 

0.8 4.6 X 10' 

0.8 2.0 X JO'' 

0.77 2.0 X 10' 

0.5 2-3 X 10' 1 

OJ I.Ox 10' 

017 2.0 X 10' 

0.:1 3.4xlO' 

+ BETS '99 
• ECC '99 
* HEAT'97 
... CAPRICE '97 
o MASS '94 
o Tang '84 
• Golden et al. '84 

Emax 

(TeV) 

1:10 

50 

12 

12 

8-12 

2.'.l 

1.2 

0.7 

111111 Webber et al. (Radio) '80 

101 L.......L....I....L..u.J.J.Ll.,e:;:::.J......J........._L.1.1:ll... ..... t....Jc...LJ...LUJ.l'---'-.JI....I..I..LJ.JW 

10
° 10

1 
102 IOJ 

10
4 

ENERGY ( GeV) 
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Fig. 4 .  E11ergy spectrum of the high-energy, cosmic-ray electrons. The expected energy 
spectr11111 (black lines) a11d the expecred observatio11 ra11ge a11d rnlues of the 
PPB-BETS (blue line) are shown wirh the obserred ,·alues ob1ai11ed i11 previous 
experimel1/s (rymbols). 
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(a) (b) 

z z 

X y 

Fig. 5. CCD images of a co.smic-ray elet1ro11 sho..-er, obsenwl b)' 1he B£TS, 011 1!te X-Z 
plane (a) and 1!te Y-Z plane (b) (after Torii et al . . 2000). 

the PPB- BETS is also shown as a thick, straight blue line in Fig. 4. Observations of the 
precise energy spectrum using the PPll-BETS should reveal the types of sources responsible 
for the spectrum and the most reliable combination of dif

f

usion parameters. Precise 
obscrvmions around 10 GeV will also enable us to analyze the details of solar-modulation 
effects and the reaccclermion mechanism in the Galaxy. 

The design of the PPB-BETS is basically the same as that for a llETS developed for 
lower latitude observations (Torii el al .. 2000). However. various improvements have 
been made (Torii el al .. 1999). The PPB-BETS instrument consists of a shower detector. 
which incorporates an imaging calorimeter and a trigger system. a data acquisition system 
and a telemetry system. The shower detector consists of multiple layers of scimillaiing 
fibers and lead plates. Incident high energy electrons induce a shower inside the multi­
l,1yer detector. which is observed as a three-dimensional charncteristic patlern of light 
emissions. This optical image is intensified by a sci of image intensifiers and recorded by 
a CCD camera system. Two sets of image-intensified CCD camera systems are used 10 
simultaneously image the emission patlerns on the X-Z and Y -Z planes, respectively; the 
three-dimensional paucrn, where the Z-axis represents the vertical direction and the X-Y 
plane represents the horizontal plane. is then reconstructed. Figure 5, taken from Torii el 

al. (2000). shows an example of the images of the shower on the X-2 plane (panel (a)) and 
the Y -2 plane (panel (b)). All the data are processed electrically and trnnsmiued via 
telcrnctry, hence the recovery of the instrument is not essential for data acquisition. This 
point is an important advantage for use in the PPB experiment because recovery in the 
Ant,1rc1ic region is very difficult, especially for the PPll experiment. For example, an 
alternative observmion technique that utilizes an emulsion chamber (e.g .. Nishimura el al .. 

1997) can be used to observe spectrum up to a few TeV. but the instrument must be 

recovered in fact to obtain the observation data. The PPS-BETS h:c; several other 
advamages over the emulsion chamber system, as discussed by Torii et al. (1999, 2000). 
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4. Geophysical observations 

One of the main purposes of tbe geophysical observations that will be performed in 
the 2nd-PPB experiment is to observe various phenomena in tbe magnetospheric and 
ionospheric boundary layers. As shown in Fig. 2, the PPBs can traverse a large latitudinal 
range of magnetic coordjnates and will float across several interesting regions and bouod­
aries during their circumpolar trajectory. Figure 6 shows these regions and boundaries in 
the magnetosphere, aod Fig. 7 shows the approximate locations of their ionospheric 
projection along the geomagnetic field lines. From lowe.r latitudes, the PPBs can remain 
in the region of the plasma sphere, plasmapause. trough, auroral oval (plasma sheet), 
plasma sheet boundary layer (PSBL), low latitude boundary layer (LLBL), mantle region, 
cusp region, and polar cap (lobe) region. Small circles on the expected trajectory in Fig. 
7 indjcate the daily positions of tbe balloon. The PPBs are expected to remain for about 
1-3 days in each region and boundary during thefr flight. We are planning to launch 
three balloons in as rapid succession as weath.er conditi.ons permit (with an interval of less 
than. I day) to place all tl,ree balloons in adjacem areas of the trajectory (separated by a 
few hundred kilometers) to form a cluster of balloons. Hence, the three balloons are 
referred to as a "Balloon Cluster'', recalling tbe successful CLUSTER-2 satelLite project in 
wruch four satellites were p]aced in I.he magnetosphere. The payload configurations of all 
three balloons are identical. Simultaneous observations with identical sets of instruments 
within and omside of the target regions and boundaries should enable the spatial distribu­
tion and temporal variations of various phenomena occurring around these regions and 
boundaries Lo be smdied. 

A list of the sciemific objectives of tbe geophysical observations in the 2nd-PPB is 
shown in Table 4. Figure 8, taken from Fujii et al. (1994), sbows lh.e electromagnetic 
parameters across an area of intense auroral acti,�ty, westward traveling surge (WTS), 
observed by a low-altitude pohu·-orbiti_ng sac.el.Ute (DE-2). The satellite moved equawr-

Magnetic 
coupli ng 
region 

Fig. 6. Various regions and boundaries in the magnetosphere. 



166 A. Kadokura et al 

270 

l:c :;::::j Plasmapause 
ml Trough 
- Cusp, LLBL, PSBL 

0 

180 

90 

t·:-:-:-� Auroral zone 
� Polar Cap 

Fig. 7. Approximate location of the ionospheric projection of the various regions and 
boundaries in the magnetosphere. The expected trajectory of the PPB is also shown 
by the thick black line. The circles 011 the trajectory indicate the dai�y positions of 
the balloon. 

Table 4. A list of scientific targets of geophysical observation in the 2nd-PPB campaign. 

· Phenomena around the PSBL region. associated wi1h substoml 

· SAJD (sub-auroral ion drift), associated with substom, 

· Wa\'e-parLicle inreracrion around the plasmapausc 

· Flux varia1ion of the radiation bel t part ides, associated with s1orm 

· Phenornena around l he cusp, cleft.. and mantle region. responding lo vari ati on in sol ar wind parame1.ers 

· Response ofthc polnrcap convec1jon to sol ar wind pammer.ers 

· Elccrromagnetic dynamics 1n the vici nity of auroral activity (e.g .. wcslward lravclin,g surge. omega hand) 

· Local time dependence oflhe relationship among elec1ric field. magnetic vari ati on. and panicle precipiracion 

· Sourte mechanism for the quasi-periodic VLF emission and panicle precipil::ation in lhC Pc., range 

· Relat ionship becwcen tlic ULF pulsacion and auro.-al X-ray pulsation in the PcS range 

· Quick response of electric field and magnetic variati on at m jd-latiwde, to variation in the solar wind paC'ilme1ers 

· Simulcaneous observation of the Global Mode PcS with magnctospheric satellites ond SuperOARN 

· Variati on in the atmospheric electric para mete.rs, associat(!d wilh solar events (e.g., proton event) 

· Relationship between the plasma nows observed by the SuperDARN and electric lield and magnecic field 

veccors observed by PPB 

· Relationship becween the radar echo region observed by the Super DA RN and fluctuation of the cotal electron 

content and eleccric field observed by PPB 
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Fig. 8. Example observalion of 1he PSBL region and SAID by 1he DE-2 sa1el/i1e (ajler Fujii 
el al, 1994). 

ward as time advanced from left to right in Fig. 8. Intense equatorward and poleward 

electric fields are visible around the poleward and equatorward boundaries of the auroral 

electron precipitation region, respectively. The former one is frequently observed in the 

PSBL region and is considered to be closely associated with the process around the X-type 

neutral line in the tail (e.g., Burke et al., 1994). A characteristic pattern of field-aligned 

currents (FAC), an intense hydromagnetic wave activity, and a velocity-dispersed ion 

precipitation structure (VDIS) are also observed around the PSBL region (e.g., Fukunishi 

et al., 1993; Wygant et al., 2000). 

The latter one around the equatorward boundary is called a "sub-auroral ion driti 

(SAID)" and is usually observed during the late expansion to recovery phase of a substorm 

predominantly in the pre-midnight, sub-auroral region around the trough region ( e.g., 

Spiro et al., 1979; Anderson et al., 1993; Karlsson et al., 1998). These characteristics of 

the PSBL region and SAID have been mainly studied using low-altitude satellite observa­

tions. To our knowledge, very few observations of their temporal variations have been 

performed with a higher resolution than that of the satellite revolution period. 

Auroral X-ray observations by PPB-6 in the 1st-PPB experiment revealed that the 

characteristic energy of auroral X-rays reaches a maximum value around the plasmapause 

region, as shown in Fig. 9 (Suzuki, 1996) .  Suzuki ( 1996) suggested that this result is due 
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PPB-6 
80 

• : 00-06 h 

C : 06-12 h 

• : 1 2-18 h 
60 . 

: 18-24 h 

MLT 

40 

20 

• 

0 
60 70 80 

INVARIANT LATITUDE (deg) 

Fig. 9. Latitudinal distribution of the characteristic energies of auroral X-rays, obserred by 
PPB-6 in the /st-PPB experiment (after Suzuki, 1996). 

to the characteristics of resonant electrons, which are scattered into the loss-cone by the 

electron-cyclotron resonance process with whistler mode waves. The location of the 

plasmapause is known to vary significantly in response to magnetospheric conditions (e.g., 

Maynard and Chen, 1975). Observations using the "Balloon Cluster" in the 2nd-PPB 

experiment will enable us to investigate the spatial and temporal variations in wave-particle 

interactions around the plasmapause region. 

The trajectory of the PPB runs across the regions of the outer belt and the slot region 

of the radiation belt around the southward edge of the South Atlantic Anomaly (SAA), 

as shown in Fig. !Oa (Tsuruuchi, 1998). Energetic particle flux in the outer and inner belts 

and the slot region increases significantly during strong storm periods, as shown in Fig. I Ob. 

The "Balloon Cluster" will enable the spatial distribution of energetic electron precipita­

tion from the radiation belts and its temporal evolution during the development of a storm 

to be observed. 

In the 2nd-PPB experiment, well-coordinated simultaneous observations with the 

SuperDARN HF-radar network, Antarctic stations, low-altitude satellites, NOAA, DMSP, 

AKEBONO, etc., and magnetospheric observations by CLUSTER-2, GEOTAIL, and 

geosynchronous satellites are also expected. 

The EMW has three observational modes: I )  wave form observations in a frequency 

range of 0.2-4.0 Hz with 10-Hz sampling, 2) intensity observations for 4 specific frequency 

channels (300 Hz, 600 Hz, 1 .2 kHz, and 2.4 kHz) with a 0.5-s resolution, and 3) frequency 

sweep observations at 4 specific frequencies (5 kHz, 1 0  kHz, 20 kHz, and 36 kHz) with a 

0.5-s resolution. The EFD observes two horizontal and one vertical electric field compo­

nents using a double spherical probe technique with resolutions of 0.2 m V /m (horizontal) 
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and 0.8 mV /m (vertical) and a one-second sampling. The atmospheric conductivity and 

current density are also measured every 10 min. The MGF installs a 3-axis fluxgate 

magnetometer, 2-axis clinometer, and a set of sunsensors, and measures the geomagnetic 

field vector with a 0.25 nT resolution and one-second sampling. The AXI contains two 

kinds of auroral X-ray detectors: an imager that observes the two-dimensional auroral 

X-ray distribution with a 4 X  4 resolution and a FOY of 140°
, and an omni-directional 

counter for higher energy X-rays ( > 200 keV) with a sampling rate of l s. The TEC 

measures the total electron content in the ionosphere along the line-of-sight of a GPS 

satellite with a GPS dual-frequency receiver and a one-minute sampling period. From the 

circumpolar trajectory of the PPB, at least three GPS satellites can be expected to be always 

observed above an elevation of 10'. 

5. Summary 

An overview of the 2nd-PPB experiment was described in this paper. The 2nd-PPB 

campaign will be performed during late December 2002 to January 2003 at Syowa Station 

in Antarctica by JARE-44. In the 2nd-PPB experiment, one B IOO balloon will be 

launched to observe primary cosmic-ray electrons within an energy range of 10 GeY to l 

TeV, and three B50 balloons, known as the "Balloon Cluster", will be launched to observe 

the spatial and temporal variations of various phenomena in various magnetospheric and 

ionospheric regions and boundaries. The scientific purposes and instrument designs that 

will be used for these observations were also introduced. All of these observations utilize 

the unique advantages of the PPB experiment, namely its long duration and circumpolar 

trajectory. The new satellite data acquisition system that will be used in the 2nd-PPB 

enables more sophisticated observations with much higher temporal resolutions to be 

performed, compared with the ! st-PPB experiment. A well-coordinated international 

collaboration with ground-based and satellite-based observations is anticipated. 
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