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Abstract: The EIS CAT Svalbard radar (ESR) has obtained neutral wmd field data 

down to 90 km altitude in two period runs in August 1998. This has been rendered 

possible by successful ehmmation of ground clutter echoes by the ESR staff. Features 

of the obtamed tidal components are then comparatively studied with the ATM2 

(Atmosphenc Tidal Modelmg Version 2) steady tidal model which assumes 

climatological background zonal flow. It is found that the results are fairly consistent 

with theoretical pred1ct10ns that the diurnal component is almost evanescent with some 

md1cation of propagatmg charactenst1cs, and that the sem1-dmrnal one is dominated by 

short vertical wavelength higher order mode prevalent at higher latitudes. The 

ter-diurnal component is also not in contradiction with non-hnear mteraction theory. 

Convmcmg delineation of these behaviors, however, awaits further study on the zonal 

wave number characteristics of relevant waves by longitudmal network collaborations. 

1. Xntroductirnrn 

The EISCAT Svalbard radar (78.2°

N, 16.1°

E) has become in operation in 1977 
and some preliminary results have been published as to the sounding of upper atmo­

sphere region above 115 km (W ANNBERG et al., 1997). Since the upgrade of transmitter 

power to 1 MW in December 1997, a ground clutter problem has been tackled and echo 

returns down to 90 km altitude have become available for the study of dynamics in the 

mesopause region at polar latitudes. In August 1998, a tidal dynamics run was carried 
out and 70 hours data during the Test run on 11-14 August (VAN EYKEN et al., 1999) 

and 51 hours data during the CP (Common Program) run on 17-19 August are 
obtained for the altitude region from 93 to 120 km. In this paper, preliminary analyses 

are carried out to be compared with the steady modeling of atmospheric tides by the 
ATM2 (Atmospheric Tidal Modeling Version 2) developed in early 1980's by Aso et al. 

(1987). 

2. Observation 

The EISCAT Svalbard radar is located at Longyearbyen, Svalbard (78.2
° 

N, 16.1 ° 
E). It operates at UHF frequencies of 500 MHz with a peak power of 1 MW. In the 
observations, the antenna was pointing to its local magnetic zenith which has the 
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inclination of 82
° 

and declination of 2° . A new GUP3 coding was used to explore the 

altitude from 90 to 550 km, and here use is made of the ion drift velocity at the interval 

of 1 min or 2 min in time and 3 km between 93 and 120 km altitude. A field-aligned ion 

velocity is assumed to be representative of neutral wind projected to the geomagnetic 

lines of force in that below 120 km Vm > Q ., i.e., ion-neutral collision frequency V.n 

dominates the ion gyrofrequency Q. (BREKKE, 1997) and parallel electric field is small. 

If we focus on the long period waves, the wind field is mainly horizontal (vertical 

component is two or three orders of magnitude smaller). So the line-of-sight velocity 

divided by cos 82
° 

is assumed to represent meridional wind component of pertinent 

neutral motion. In the GUISDAP (Grand Unified Incoherent Scatter Design and 

Analysis Package, 1994) analysis, positive sign refers to the velocity towards the radar 

contrary to the NCAR convention, hence positive values refer to northward. All 

measured velocities at 1 min or 2 min intervals are averaged over + 30 min with data of 

more than three standard deviations from the average being eliminated, and time series 

in steps of 0.25 hour are provided for further tidal analysis. At high latitudes, auroral 

disturbances are expected to cause changes in neutral wind field. During the radar run, 

magnetic activity became enhanced three times, at 2330 UT on August 11 and 12, and 

1500 UT on August 14. But corresponding changes in ion drift velocity occurred only 

above about 150 km. The geomagnetic activity effect on mesopause neutral wind is still 

worthy of further study (e.g. WAND, 1983; JoHNSON and LUHMANN, 1985) and will be 

discussed elsewhere. 

3. Tidal Analysis 

Figures la  and lb show the frequency spectra versus altitude for the Test and CP 

runs, respectively. As the data points are unevenly sampled, the Lomb method is used 

to obtain periodgrams at each height (PRESS et al., 1992). In the figure, vertical axis is 

in unit of cycles/day and 1.0 and 2.0 correspond to diurnal and semi-diurnal compo­

nents, respectively. Shaded contour represents spectral power. In the Test run (a), it 

is seen that the diurnal component dominates at higher altitudes, whereas the semi­

diurnal components appear at most of the altitudes. Also, signatures of ter-diurnal and 

quatra-diurnal components and some other short period waves like 2.5 cpd (-10 hr) are 

apparent. The 10.4 h component corresponds to the period of a first anti-symmetric 

normal mode of zonal wavenumber s = 1 with equivalent depth of rH � 10 km where r is 

the ratio of specific heats and H is a scale height (FORBES et al., 1999). 

For the CP run in Fig. lb, a semi-diurnal component, not exactly 12 hr at some 

heights, is less dominant at higher altitudes where a diurnal component predominates. 

A ter-diurnal component is also traced as in Fig. l a. 

Now, we extract the amplitude and phase of relevant tidal components by fitting 

mean plus diurnal, semi-diurnal and ter-diurnal sinusoidal components to time series at 

each height. Linear least square fitting gives uncertainty in cosine and sine terms of 

each harmonic components. Uncertainties in amplitude and phase are then estimated 

to be mostly less than 1 m/s and 1 hr respectively, and hence are not indicated in the 

figure. Figure 2 indicates the amplitude by solid lines and the phase by dashed lines of 

the diurnal component for Test and CP runs which are identified by solid circle and 
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Fig. 1. Spectra versus altitude of the merzdwnal wind observed by the EISCAT Svalbard radar during 

the Test (a) and CP (b) runs in August. 
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Fig. 2. Altitude profiles of the amplitude (solid line) and phase (dashed /me) of 24-hr 
component for the Test (circle) and CP (triangle) periods. 
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Fig. 3. Numerical profiles of the northerly (left) and westerly (right) components of diurnal tide for the 

June solstice wind condition by the ATM2 modeling. Latitudes are 15° (solid), 30° 

(dashed-dot), 45° (dashed-double-dot), 60° (dashed) and 75° (dotted) in the Northern 

Hemisphere. 

triangle symbols, respectively. Phase is in UT hours. As the local time is 1 hr ahead 
of the universal time (UT), phase values in LT are UT+ 1 hr. Amplitude is lager at 
higher altitudes for CP period, consistent with spectral analysis in Fig. 1. As for the 
phase, it shows almost evanescent nature with a little bit of mixed propagating mode. 
The northward maximum around 1200 LT is very much consistent with theoretical 
predictions by the classical theory and by the ATM2 modeling result shown in Fig. 3. 
The model solves the coupled partial differential equations for the velocity vector and 
temperature perturbations in the atmosphere with latitudinal temperature gradient and 
background mean zonal flow. Also included are a transport of heat and momentum by 
molecular and eddy diffusion, Newtonian cooling, parameterized gravity wave drag 
(FORBES et al., 1991) as a possible dissipation effective on short-vertical wavelength 
diurnal modes, and also horizontal diffusion for computational stability. In the model­
ing, resolutions in altitude and latitude are 250 m and 2.5° , respectively and background 
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wind at June solstice is assumed based on the CIRA86 wind model. It is evident that 

the diurnal tide is propagating at latitudes equatorward of 30
° 

latitude where the inertial 

period is longer than 24 hr while at higher latitudes, the evanescent mode due to ( 1, -2) 

forcing becomes dominant which represents fairly stable phase around 1200 and 1800 

LT for northward and eastward component, respectively. In between, e.g., at 45
° 

N at 

lower heights and at 60
° 

N above 90 km, phase rotation with respect to altitude is 

indicative of mixtures of evanescent and propagating modes. The present numerical 

modeling for the effect of background zonal wind on the non-migrating diurnal tide 

suggests the penetration of propagating component to higher latitudes (EKANA YAKE et 

al. , 1997). This is due to the increased Doppler shifted wave frequency of the 

westward propagating component in the strong westerly wind regime in the winter 

hemisphere and vice versa as in 

a=a+ 
S· V 

a. sine 

where a is the earth radius, V, background zonal wind, and 8, colatitude. A slight 

phase slope envisaged in Fig. 2 is interpreted as a mixture of propagating non-migrating 

component to evanescent modes. 

The semi-diurnal period component is shown in Fig. 4. Amplitude ranges around 

5 m/s corresponding to 35 m/s ( 1/cos 82
° 

:::=:=: 7) of meridional wind. Amplitude profiles 

are not inconsistent with theoretical prediction by the ATM2 model which is shown in 

Fig. 5. Phase slope signifies rather short vertical wavelength of 30-35 km which is 

short compared with higher order (2, 4) (50km) or even (2, 5) (40km) modes. The 

modeling reveals the dominance of a fairly short vertical wavelength above 90 km at 

polar latitudes. At 75
° 

N, the phase undergoes rapid excursion above 90 km corre-
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sponding to the amplitude minimum. As has been shown by LINDZEN and HoNG 
(1974) and by Aso et al. (1981) the semi-diurnal tide is more influenced by the 
background wind. Higher order modes thus excited predominate at higher latitudes, 
giving rise to shorter vertical wavelength characteristics. 

Figure 5 suggests the northward phase of 0500 LT at about 100 km height which is 
slightly different from observed values of 0000-0300 LT. Different wind model gives 
some difference, and absolute agreement in phase in this short-vertical region is not to be 
expected. Also, FoRBES et al. ( 1995) discovered the dominants = 1 westward moving 
semi-diurnal component in summer time by the South Pole meteor radar by identifying 
the zonal wavenumber of the relevant oscillation. This is fairly consistent with the 
intuition that s = 2 wind component should vanish at the pole. The origin of this 
component is not clear though the prediction of the nonlinear interaction of migrating 
semi-diurnal component with stationary s = 1 planetary wave was studied numerically by 
MIYAHARA and MIYOSHI ( 1997). The consistency of the observed steep phase slope by 
ESR should further be investigated by identifying pertinent zonal wavenumber. 
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Fig. 6. As in Fig. 2 except for the 8-hr component. Theoretical predictions are for 47° N latitude by 

TEITELBAUM et al. (1989) . 

Figure 6 shows the result for ter-diurnal component as compared with the theoret­

ical prediction by TEITELBAUM et al. (1989). Theoretical values of phase at 47
°

N are 

given for solar-driven components by the third harmonic of insolation absorption with 

and without the effect of non-linear coupling of migrating diurnal and semi-diurnal 

component by the advection term. The phase is shifted by 2 hr to be compared with the 

northward component. Latitudinal phase variation between 47
° N and 79

°

N in 

summer dose not differ too much and observed phase values are, by and large, consistent 

with the theory below 100km. Equivalent depths of ter-diurnal tide are 12.9, 7.7, 5.1 

km·· ·etc and its vertical wavelength is fairly large, while the observed one is very short 

m some case. These are also issues to be studied by relevant numerical model. 

4. Discussions 

A first attempt to derive tidal features of the lower thermospheric regions by the 

EISCA T Svalbard radar is an impetus to extend coordinated observation of lower 

thermosphere tides at polar region. This was made possible by the ESR staff's efforts 

to reduce the ground clutter which precluded the sounding of lower E region. 

Two runs of 2-3 days duration thus analysed have given a general view on the 

meridional wind variations of tidal periods in the altitude range of 90-120 km. It is 

found that the diurnal component is rather stable in phase which is consistent with 

dominant evanescent mode in the polar latitude summer time and is a common feature 

indicated in the atmosphere tidal modeling. Also, a phase tilt suggests a mixture of 

non-migrating tides. Further evidence, however, requires the zonal wavenumber infor­

mation. As for the semi-diurnal component, phase excursion is fairly rapid which is 

consistent with our numerical model. This short vertical wavelength characteristic 
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renders the averaged tidal amplitude smaller. Possible 12  hr period oscillations as the 

pseudo-tide due to tidal modulation of gravity wave momentum flux in the mesopause 

region (WALTERSCHEID et al. , 1986) or inertial period oscillation close to 12 hr are to be 

paid some attention with regard to interpretation of this component. The summertime 

s = 1 semi-diurnal component as observed at the South-Pole is however not resolved in 

the present analysis. Hence, zonal wavenumber is really an important parameter along 

with latitudinal structure in this highly variable wave regime. The ter-diurnal compo­

nent observed in ESR data is rather rudimentary though the steeper phase gradient 

indicative of nonlinear coupling is not inconsistent with our result. MANSON and MEEK 

( 1986) reported that ter-diurnal amplitude is growing larger above 100 km and that its 

phase gradient is large and irregular in summer which is also consistent with our 

findings. They also noted longer vertical wavelength in winter. Thus global long­

itudinal collaborations between observing sites at polar latitude are urgent issues to 

resolve these structured tidal characteristics. 

5. Conclusion 

A two-period tidal observation run was carried out and preliminary signatures of 

atmospheric tidal oscillation observed by the EISCAT Svalbard radar have been caught 

a glimpse. Basically, they are consistent with the steady tidal modeling. It is, howev­

er, envisaged that further sophistications both in observation and theory are needed to 

fully or quantitatively understand the physical process, e.g., local effects at auroral 

latitudes and dynamical coupling and nonlinear interactions in the whole polar middle 

atmosphere. 

Longitudinal study based on combinations of radars along the arctic circle, and 

arctic/antarctic distinction study between two polar hemispheric regions are thus a key 

to our goal. 
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