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Abstract: Two Antarctic aubrites, Yamato (Y)-793592 and Allan Hills 

(ALH)-78113, were mineralogically studied, for comparison with minerals in 

non-Antarctic aubrites and enstatite chondrites. The Antarctic aubrites are breccias 

consisting of coarse-grained enstatite fragments and fine-grained matrix. ALH-78113 

has 200-300 µm dark clasts that are fine-grained aggregates of silicate and opaque 

minerals. FeO-rich pyroxene (up to Fs2 1) occurs in the dark clasts. One dark clast 

has K-feldspar. These dark clasts seem to be exotic inclusions with distinct mineralogy. 

Daubreelite in the two Antarctic and non-Antarctic aubrites is lower in Zn than 

those in EH3-5 chondrites. This reflects the depletion of volatile elements in aubrites. 

Hydrated Na-Cr-sulfides were also found. Djerfisherite is a common accessory mineral 

in aubrites. It is characterized by low contents of Cu and Na, and high content of 

Ni, in comparison to djerfisherite in EH3-5 chondrites. Y-793592 has many roedderite 

grains. The occurrences of roedderite, Na-Cr-sulfides and djerfisherite in aubrites 

suggest that Al20
3 

relative to alkali elements may have been fractionated during 

nebular or magmatic process. 

1. Introduction 

Aubrites are meteorites that consist mainly of nearly pure enstatite with various 

accessory minerals including distinct sulfides. Although aubrites are of igneous origin 

(WATTERS and PRINZ, 1979; WOLF et al., 1983), they have oxygen isotopic compositions 

(MAYEDA and CLAYTON, 1980) and mineral assemblage similar to those of enstatite 

chondrites. All these enstatite meteorites formed under highly reducing conditions. The 

origin of aubrites is controversial. WATTERS and PRINZ (1979) suggested that aubrites 

were derived from a magma of EL6 composition, although plagioclase was fractionated 

in aubrites. KEIL ( 1969) reported higher Ti contents of troilite in aubrites than those 

in enstatite chondrites. KEIL (1969) and BRETT and KEIL (1986) suggested that aubrites 
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were not derived from known enstatite chondrites on the same parent body, because 

there is no mechanism for high concentration of Ti-rich troilite in aubrites during 

magmatism, and no enstatite chondritic clasts in aubrites are encountered. In addition, 

KEIL (1989) pointed out that abundant diopside in aubrites cannot be derived from an 

enstatite chondritic material by magmatism. 

We have carried out a detailed mineralogical study of two Antarctic aubrites, 

Y-793592 and ALH-78113, using a scanning electron microscope (SEM). Y-793592 is 
the first aubrite in the Yamato meteorite collections and was described by Y ANAi and 

KOJIMA (1991) and YANAI (1992). ALH-78113 was first described by WATTERS et al. 

(1980). For comparison, we also analyzed some accessory minerals in non-Antarctic 
aubrites, Aubres, Bustee, Cumberland Falls (achondritic part), Khor Temiki and Pefia 
Blanca Spring, from the Max-Planck-Institut fiir Kernphysik collection. On the basis 

of these data, we discuss the mineralogical features of aubrites in comparison to EH 
and EL chondrites. 

2. Experimental Methods 

Quantitative analyses of minerals were performed with JEOL 733 and SEMQ type 

wave length-dispersive electron-probe microanalyzers (EPMA). The accelerating voltage 

and beam current were 15 kV and 3 to lOnA, respectively. The Bence-Albee correction 

method was used for the analysis of silicates, and the ZAF method was used for sulfides 

and metals. A special deconvolution program was applied to correct for X-ray overlaps 

of Kp on Ka lines of some successive elements such as Cr-Mn, Fe-Co and Ni-Cu. 

3. Petrography and Mineralogy 

3.1. Y-793592 

Y-793592 is a monomict breccia consisting of coarse-grained enstatite fragments, 
up to 5 mm, with fine-grained matrix. Such a structure is typical of common aubrites 

(WATTERS and PRINZ, 1979). The matrix consists of enstatite with diopside, olivine, 

plagioclase, a silica mineral, glass and opaque minerals (Table 1 ). Phases in the matrix 

are usually small in size (below 200 µm). Although the abundance of opaque minerals 

in aubrites is fairly small (WATTERS and PRINZ, 1979), opaque minerals occur pre­

dominantly in the matrix as isolated grains or aggregates of a few minerals. Y-793592 

displays shock metamorphic features; mechanical twinning of enstatite and troilite, and 

wavy extinction of olivine. 

Enstatite in Y-793592 is almost homogeneous in composition, En97.8- 99.s 

Fs0_0_0_2Wo0_2_2_2 (Table 2). Diopside is En51 .s-s6.6Fs0_0_0_1Wo43 _3-4s.2 in com­

position (Fig. l a). Olivine is pure forsterite. Most of plagioclase is sodic (Ab93 _3-97.4 

An0_0_4_ 10r2 .2_4_8), but a few CaO-rich plagioclase fragments (Ab76.o-89_9An7.4-23.1 

Or0 .9_3_7) occur (Fig. 3). The compositions of plagioclases are in the range of non­

Antarctic aubrites (Ab75_95An2_ 240r1_ 5 after WATTERS and PRINZ, 1979). Glass 
fills the interstices between mineral fragments, and is usually rich in Si02 

(60.2-78.2 wt%), Al203 (2.0-20.8%) and Na20 (0.1-10.9%). Most of the glass are 

enriched in normative feldspar. A silica mineral grain occurs in the matrix and appears 
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Table 1. Constituent phases in Y-793592 and ALH-78113. 

Meteorite Y-793592 ALH-78113 EH3-5 EL6 
-------� -·-·�-- -·-------·---- ---- ---- -

Component 
Coarse Coarse 

Dark 
pyroxene Matrix pyroxene Matrix 

clast 
fragment fragment 

Enstatite + + + + + + + 
Diopside + + + + + 
Olivine + + + + 
Plagioclase + + + + + 
K-feldspar + 
Silica mineral + + + + 
Roedderite + + 
Glass + + + + 

Fe-Ni metal + + + + + + + 
Schreibersite + + + + + 

------

Troilite + + + + + + + 
Alabandite + + + + 
Niningerite + 
Oldhamite + + 
Sphalerite + + 
Daubreelite + + + + + 
Djerfisherite + + + 
Na-Cr-sulfide + + 

Minerals in EH3-5 and EL6 after KEIL (1968), EL GoRESY et al. (1988), and KIMURA and EL GORESY 

(1988). Only representative minerals in EH3-5 and EL6 are listed here. 

to be quartz (Fig. la). Y-793592 has many roedderite grains, 20-50 µm in size, in the 

matrix, which usually show irregular to rectangular shapes (Fig. l a). Roedderite has 

0.3-0.9 wt% Al203 , < 0.1 % FeO, 3.1-3.4% Na20 and 4.2--4.9% K20. Roedderite in 

aubrite was found only from LEW87294 (NTAFLOS and KoEBERL, 1992), although its 

composition was not reported. 

Kamacite and taenite occur rarely in enstatite fragments and the matrix. Kamacite 

and taenite have 2.4-5.3 and 34.5 wt% Ni, respectively (Table 3). Schreibersite (16.7 wt% 

Ni) also rarely occurs in the matrix. Troilite has 0.1-8.5 wt% Ti and 0.2-0. 7% Cr (Table 

4). The high Ti content of troilite is typical of aubrites (Fig. 4). Daubreelite often occurs 

as isolated grains that contain 0.6-2.0 wt% Mn and 0.0-0.3% Zn. Alabandite and 

djerfisherite have suffered severe terrestrial weathering. Djerfisherite has 0.3 wt% Na, 

7.9% K, 1.3% Ni and 0.2% Cu. 

Caswellsilverite was not found in the aubrites studied here. Instead, Y-793592 has 

a few grains of another Na-Cr-sulfide, 10-20 µm in size (Fig. 1 b). They are often in 

association with troilite, and occur in the matrix. These grains always consist of bright 

and dark areas under back-scattered electron image. Such a structure is typical of 

intergrowth of minerals A and B which were reported in EH chondrites by EL GoRESY 

et al. (1988). Bright (mineral A) and dark (mineral B) areas of Na-Cr-sulfides in Y-793592 



Table 2. Representative chemical compositions of silicate phases (wt%). 

Phase Meteorite 0cc . Si0 2 Ti0 2 Al203 Cr20 3 FeO MnO M gO CaO Na 20 K
20 Total Fo Or/En Ab/Fs An/Wo 

Feldspar Y-793592 2 68.2 0.00 19.7 0.00 0.03 0.00 0.00 0.40 11.4 0.69 100.4 3.8 94.3 1.9 
Y-793592 2 62.5 0.00 23.2 0.00 0.05 0.00 0.00 5.19 9.5 0.18 100.6 0.9 76.0 23.1 
ALH-78113 2 57.6 0.00 25.7 0.00 0.00 0.00 0.07 8.24 7.4 0.09 99.l 0.5 61.6 37.9 
ALH-78113 2 68.6 0.00 19.2 0.00 0.00 0.00 0.00 0.15 11.5 0.31 99.9 1.7 97.6 0.7 
ALH-78113 3 64.4 0.00 17.7 0.00 0.08 0.00 0.31 O.o2 1.3 15.2 98.9 88.4 11.5 0.1 

Glass Y-793592 2 70.8 0.00 17.0 0.00 0.05 0.11 2.97 0.00 8.93 0.61 100.5 
ALH-78113 2 74.2 0.00 14.5 0.00 0.00 0.00 0.79 0.08 7.62 1.24 98.4 
ALH-78113 3 61.8 0.04 12.2 0.22 l .61 0.00 7.59 9.07 6.70 0.22 99.4 5· 

('l) 
""1 

Olivine Y-793592 2 43.l 0.00 0.00 0.00 0.00 0.o3 56.6 O.o2 0.00 0.01 99.8 100.0 
ALH-78113 2 42.6 0.00 0.00 0.00 0.00 0.o3 57.6 0.o7 0.00 0.00 100.2 100.0 
ALH-78113 3 42.6 0.03 0.08 0.00 1.22 0.09 53.9 0.06 0.02 0.00 98.0 98.7 

> 
Diops ide Y-793592 2 55.2 0.00 0.35 0.00 0.00 0.00 20.l 23.8 0.41 0.00 99.9 54.2 0.0 45.8 

""1 

ALH-78113 2 55.7 0.06 0.55 0.00 0.00 0.03 20.4 23.4 0.28 0.00 100.4 54.8 0.0 45.2 � 
ALH-78113 3 54.4 0.59 0.12 0.13 l .17 0.33 19.2 22.8 0.40 0.02 99.1 52.9 1.8 45.3 ri" 

> 
Enstat ite Y-793592 l 59.5 0.00 0.05 0.00 0.00 0.00 39.5 0.26 0.00 0.00 99.3 99.5 0.0 0.5 a-

Y-793592 2 59.8 0.00 0.05 0.00 0.06 0.00 39.5 0.32 0.00 0.00 99.7 
('l) 

99.3 0.1 0.6 "' 
ALH-78113 l 60.1 0.00 0.00 0.00 0.00 0.00 40.2 0.35 0.00 0.00 100.6 99.4 0.0 0.6 
ALH-78113 2 59.7 0.00 0.01 0.00 0.20 0.00 39.3 0.41 0.00 0.00 99.6 98.9 0.3 0.8 
ALH-78113 2-i 55.7 0.00 0.00 0.00 12.6 0.43 29.9 0.18 0.00 0.00 98.8 80.6 19. l 0.4 
ALH-78113 3 56.9 0.15 0.25 0.10 12.4 0.35 29.7 0.35 0.00 0.00 100.2 80.5 18.8 0.7 

Roedderite Y-793592 2 71.5 0.00 0.84 0.00 0.00 0.00 19.7 0.00 3.17 4.51 99.7 

Silica m ineral Y-793592 2 97.9 0.00 1.63 0.00 0.00 0.00 0.00 0.00 0.76 O.o2 100.3 
ALH-78113 2 96.3 0.00 1.74 0.00 0.00 0.00 0.03 0.08 0.79 0.o7 99.0 

Occurrence 1: coarse -gra ined enstat ite fra gment, 2: matrix, 3: dark clast, 2-i : isolated FeO -rich pyroxene in matrix . ....... 
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Mineral 

Kamacite 

Taenite 

Schrei bersi te 

Fig. la. Back-scattered elec­
tron ( BSE) image of diopside 
(Di), roedderite (Ro) and a 
silica mineral ( Si) in the 
matrix of Y-793592. The 
matrix mainly consists of 
enstatite fragments. White 
scale bar of JOO µm. 

Fig.  lb .  A Na-Cr-sulfide 
grain in Y- 793592, consisting 
of bright (mineral A) and 
dark ( B) areas. BSE image. 
White scale bar of JO µm. 

Table 3. Representative chemical compositions of metals (wt%). 

Meteorite Si p Fe Co Ni Total 

Y-793592 0.13 0. 05 92.9 0.30 4.72 98. 7 
ALH-78113 0.11 0.00 94.4 0.39 5.34 100.3 

Y-793592 0.17 0. 04 63.3 0.61 34.5 98.6 
ALH-78113 0.08 0.00 45.6 0.13 51. 4 97. 3 

Y-793592 0.24 15.4 66.8 0.24 16.7 99.5 
ALH-78113 0.03 15.4 55.5 0.17 27. 7 98.8 
ALH-78113 0.05 14.9 26.l 0. 10 58.8 99. 9 



Table 4. Representative chemical compositions of sulfides (wt%). 

Mineral Meteorite Na Mg s Cl K Ca Ti Cr Mn Fe Co Ni Cu Zn Zr Ag Total 

Alabandite ALH-78113 0. 57 36. l 0.17 0.10 52.4 10.6 99. 8 
Pena Blanca Spring 0. 55 36. 5 0.10 52.3 10.7 0.00 100.2 
Pena Blanca Spring* 0.77 32. 9 47.8 8. 75 10.4 100.6 

Daubreelite Y-793592 43. 9 0.09 35. l 1.69 16.1 0.30 97.2 
ALH-78113 43.2 0.05 35.8 1.19 17. 7 0.21 98.2 � 
Bustee 44.5 0.10 0.35 35.9 1.36 17.5 0.39 0.05 100.2 S" � 
Khor Temiki 44.8 0.00 0.09 36.8 0. 15 17. 1 0.14 0.13 99.3 

.... 
Ill 

Djerfisheri te ALH-78113 0.50 32.2 1.45 8.14 49.4 3.91 1.54 97.1 0 
Aubres 0. 39 33.0 1.58 8.12 0.02 0.11 0.00 50.4 0.00 1.84 1.40 0.00 96. 9 

-i 
> 

Cumberland Falls 0.05 33.3 1.57 8.86 0.00 0.05 1.54 48.l 0.03 3.71 1.89 0.02 99. 1 Ill 
Khor Temiki 0.11 33.1 1.68 8.21 0. o2 0.00 0.05 52.8 0.00 1.41 1.99 0.00 99.3 .... 
Pena Blanca Spring 0.11 32.5 1.51 9.10 0.46 0.30 0. o7 52.9 0.00 0.57 1.65 0.00 99.2 ;:s· 

> 

Mineral-A Y-793592 0.66 42.3 0.45 34.3 0.09 0.60 0.21 78. 5 
g. 

Bustee 0.83 48.1 0.94 0.05 1.21 38.2 0.05 0.05 89.4 � 
Mineral-B Y-793592 3.22 35.4 0.81 26.3 O.o3 0.00 0.01 65.7 

Bustee 1.77 41.0 1.76 1. 39 0.85 34.0 0.05 0.05 80.9 

Troilite Y-793592 37.2 1.40 0.18 0.o7 59.8 0.00 98. 7 
ALH-78113 37.4 0.85 0.53 0.08 60.8 0.00 99.7 
Bustee 36.6 6.91 0.45 0.05 55.6 99.7 

· ----·- -- ·· 

-: not analyzed. 
*: This alabandite analysis overlaps with new Ag-sulfide reported by LIN et al. (1989). 

-
I.Cl 
-
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Fig. 2a. Coarse-grained en­
statite fragments with diop­
side lamellae (bright laths) 
in ALH-78113. BSE image. 
White scale bar of 100 µm. 

Fig. 2b. Isolated FeO-rich 
pyroxene fragments ( Px) in 
the matrix consisting of 
enstatite in ALH-78113. 
BSE image. White scale bar 
of JOO µm. 

Fig. 2c. Troilite fragments 
(Tr) with thin daubreelite 
lamellae ( dark laths) in 
ALH-78113. BSE image. 
White scale bar of JO µm. 



Fig. 2d. Intergrowth of ala­
bandite ( Al) and troi/ite 
(Tr) in ALH-78113. Ala­
bandite has thin lamellae 
which seem to be troi/ite. 
BSE image. White scale bar 
of IOµm. 

Fig. 2e. Intergrowth of djerfi­
sherite ( DJ) and troilite (Tr) 
in ALH-78113. Kamacite 
( Ka) occurs near this grain. 
BSE image. White scale bar 
of JOµm. 

Fig. 2f A dark clast consist­
ing of enstatite ( En) and 
FeO-rich Ca-poor pyroxene 
( Px) with fine-grained oli­
vine and opaque minerals 
(bright) in ALH-78113. 
BSE image. White scale bar 
of IOµm. 
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Fig. 2g. Ca-poor pyroxene 
( Px) and olivine (01) in a 
dark clast in ALH-78113. 
Note that pyroxenes have 
euhedral forms and show 
normal zoning from FeO­
poor cores ( dark) to FeO­
rich rims (gray). The inter­
stices between pyroxenes is 
filled by plagioclase and 
glass. Fine-grained opaque 
minerals such as Fe-Ni metal 
and troilite (bright) abun­
dantly occur in the dark clast. 
The boundary between the 
dark clast and the matrix 
( Mx) is sharp. BSE image. 
White scale bar of JO µm. 

have 0.7-1.8 and 1.6--3.2 wt% Na, 0.5-0.6 and 0.4-0.8% K, 39.3-42.3 and 35.5-35.4% 
S, and 32.3-34.3 and 25.3-26.3% Cr, respectively. Some grains have a small content 

of Zr (0.2%). Totals of minerals A and Bare 63.7-65.7 and 74.4-78.5 wt%, respectively. 

3.2. ALH-78113 

ALH-78113 is also a breccia consisting mainly of enstatite fragments and fine­

grained matrix. Our thin section (ALH-78113,102-1) has no chondritic clasts report­

ed in ALH-78113 (LIPSCHUTZ et al., 1988). Instead, ALH-78113 studied here has 

several dark-colored and irregular-shaped clasts (hereafter dark clasts ), 200--300 µm in 

size (Table 1 ). ALH-78113 also has suffered shock metamorphism. 

Compositional range of enstatite, except that in dark clasts, is En97.8 99.8 
Fs0_0_0_6Wo0_1_2_2 (Table 2). Some coarse-grained enstatites have thin lamellae of 
diopside up to 10 µm in width (Fig. 2a). Isolated FeO-rich pyroxene fragments rarely 

occur in the matrix (Fig. 2b). These pyroxenes (En77.8_80_6Fs18_8_21.3Wo0_4 -1.0) have 

similar compositions to FeO-rich pyroxenes in the dark clasts as mentioned later. 

Diopside (En51 .5_ 55_8Fs0_0_0_9Wo44.2_48_0) often has lamellae of enstatite. Olivine is 

pure forsterite. Compositional range of plagioclase (Ab28_4 _ 97 _6An0.0 _ 70.60r 0.2 _ 5.2) 

in ALH-78113 is much wider than that of Y-793592 (Fig. 3). Glass is rich in Si02 

(58.6--85.1 wt%), Al203 (3.2-21.5%) and Na20 (1.0--10.3%). A few grains of a silica 

mineral have Al203 (1.3-1.9 wt%) and Na20 (0.6-0.8%). 

Opaque minerals occur more abundantly in ALH-78113 than in Y-793592, and 
most of them occur in the matrix. Kamacite and taenite have 1.5-5.8 and 38.8-51.4 wt% 

Ni, respectively (Table 3). Schreibersite has 22.1-58.8 wt% Ni. Troilite is abundantly 
accompanied by daubreelite lamellae, 1-10 µm in width (Fig. 2c). Troilite has 

0.4-1. 7 wt% Ti and 0.2-0. 7% Cr (Table 4). Although the Ti content of troilite in 

ALH-78113 is lower than that in Y-793592 (Fig. 4), this is within the range (0.5-5.7%) 

of non-Antarctic aubrites (WATTERS and PRINZ, 1979). Daubreelites have 0.7-1.8 wt% 
Mn and 0.0-0.3% Zn. Some alabandite grains have thin lamellae, l-2µm in width, 
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Feldspars 
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Fig. 3. Molar plot of orthoclase ( Or )-a/bite ( Ab ) -anorthite ( An) of feldspars in Y-793592 and 
ALH-78113. K-feldspar occurs in a dark clast in ALH-78113. Plagioclases, especially in 
ALH-78113, have wide compositional variations. 
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Fig. 4. Ti-Cr (wt%) plot for troilites in aubrites and EL6 chondrites ( KEIL, 1968b). Troilites in 
aubrites are usually enriched in Ti. 
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which seem to be troilite (Fig. 2d). Alabandite has 47.2-54.3 wt% Mn, 0.3-0.6% Mg 

and 7.0-14.4% Fe. Djerfisherite occurs often with troilite and alabandite (Fig. 2e), and 
has 0. l-0.7 wt% Na, 8.1-9.2% K, 3.5-4.4% Ni and 0.9-1.5% Cu. WATTERS et al. (1980) 

reported oldhamite in ALH-78113, which is not encountered in our thin section. 

Dark clasts are aggregates of fine-grained silicate phases, up to 30 µm in size, with 
abundant opaque minerals (Fig. 2f ). Pyroxene is the predominant mineral, but in some 

dark clasts olivine is also abundant, up to about 50 vol%. The interstices among pyroxene 

and olivine are filled by glass or feldspar (Fig. 2g). The boundary between the dark 
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clast and the matrix is often sharp. Ca-poor pyroxenes in the dark clasts have a wide 

compositional range, En77_ 5 _ 98 _9Fs0 .3_ 20.5Wo0 _ 3_ 2 _9 (Table 2). Some euhedral 

pyroxene grains show a normal zoning (e.g. , Fs9 .7 to Fs1 5 . 7) . On the other hand, 

FeO-rich pyroxenes have corroded or irregular-shaped outlines without a zoning (Fig. 

2f). Diopside (En5 2 _ 9 _ 59 _0Fs0 _ 0 _ 4 _ 2 Wo40 _ 6 _ 45 . 3) and olivine (Fo98 _7 _ 1 00 .0) often have 

minor FeO contents. The dark clasts usually include sodic to calcic plagioclase 

(Ab3 5 _ 0 _ 95 _7
) . A dark clast has K-feldspar (Ab1 1.5An0 .1 Or8 8 _4) . This is the first discovery 

from aubrite. Glass has minor FeO content (0.1-3.8 wt%). Fine-grained opaque minerals 

in the dark clasts are kamacite, taenite, schreibersite, troilite, alabandite and daubreelite 

(Table I ), which have compositions similar to those in the matrix. 

4. Discussion 

4.1. Thermal history of ALH-78113 and Y-793592 

Equilibrium temperature for ALH-78113 is estimated to be about 500°C using Co 

partitioning between coexisting kamacite (0.55-0.68 wt% Co) and taenite (0.17-0.14% 

Co) after the method by AFIATTALAB and WASSON (1980). Equilibrium temperature 

between kamacite (1.5-5.1 wt% Ni and < 0.05% P) and schreibersite (22.5-58.8% Ni 

and 15.4% P) in ALH-78113 is 400-500°C, using the phase diagram of Fe-Ni-P by 

ROMIG and GOLDSTEIN (1980). Alabandite coexisting with troilite in ALH-78113 has 

too low Fe content to be applied to a geothermometer. These low equilibration 
temperatures for ALH-78113 are consistent with the occurrences of lamellae of diopside 

in enstatite, enstatite in diopside, daubreelite in troilite, and troilite in alabandite. 
Y-793592 has no pair of metallic phases and sulfides to be applied to a geothermometer. 
However, rare or no occurrence of lamellae in pyroxenes and sulfides in Y-793592 

suggests more rapid cooling than ALH-78113. 

Both aubrites experienced later shock metamorphism as mentioned in Section 3.1. 
Some other aubrites as well as Y-793592 and ALH-78113, have interstitial glass (FucHs, 

1974; OKADA et al., 1988). Such a glass, enriched in normative feldspar, occurs in the 

brecciated matrix. It is possible that the partial melting took place by shock-induced 

heating. 

4.2. Dark clasts in ALH-78113 
NEAL and LIPSCHUTZ (1981 ), and LIPSCHUTZ et al. (1988) reported fine-grained 

chondritic inclusions, larger than several mm across, in Cumberland Falls and 

ALH-78113. They consist mainly of olivine (Fo79_ 99 and 10-51 vol%), low-Ca pyroxene 

(En74_ 99 and 17-56 vol%) with diopside, glass and various accessory minerals. These 
inclusions represent an unknown chondrite suite, and they originated under a broad 
redox range (LIPSCHUTZ et al. , 1988). The mineral assemblage, abundance and com­

position in the dark clasts reported here resemble those of such chondritic inclusions. 
A few dark clasts have abundant olivine like some chondritic inclusions. FeO-rich 

pyroxene occurs in the dark clasts, whose composition is within the range of the 

chondritic inclusions. Therefore, the chondritic inclusions and the dark clasts may have 
a cogenetic origin; they were probably derived from a common precursor, although the 

dark clasts represent a small sized fraction. Isolated FeO-rich pyroxenes in the matrix 
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of ALH-78113 are also fragments derived by disaggregation of such materials. 
The euhedral forms of olivine and pyroxene with normal zoning, and the interstitial 

glass in the dark clasts suggest th'at these dark clasts were once melted. On the other 

hand, FeO-rich pyroxenes with corroded outline in the dark clasts may be relics from 
the precursor. The dark clasts occur in fine-grained and brecciated matrix, suggesting 

that the dark clasts experienced melting probably by shock-induced heating. 

4.3. Comparison of mineralogy of aubrite and enstatite chondrites 

4.3.1 Roedderite 

Roedderite occurs in Qingzhen, Y-691, ALH-77295 (EH3), Y-74370, Indarch (EH4) 

and Abee {EH5) {KIMURA and EL GORESY, 1988). The Na/Na + K  ratio of roedderite 

increases in the order of EH3 (0.52-0.59), EH4 (0.63-0.68) and EH5 (0.78) (Fig. 5). 
Roedderite in Y-793592 is enriched in K20 (atomic Na/Na + K ratio 0.49-0.54) like 

those in EH3. The bulk Na/Na + K  atomic ratio of Y-793592 is 0.93 after YANAI (1992), 

and the K20-rich roedderite seems to be complementary to sodic plagioclase (Na/Na + K 

ratio 0.97 on average) in Y-793592, although glass (0.90), and rare Na-Cr-sulfide (0.82) 

and djerfisherite (0.06) also contain K20. The FeO contents of Y-793592 roedderite is 

the lowest among enstatite meteorites (Fig. 5), suggesting that it formed under the most 

reducing condition. 

Roedderite coexists with albitic plagioclase (mostly An3 > )  in EH chondrites and 

Y-793592. Distribution coefficients of Na/Na + K ratios between roedderite aod albite, 

(X/l -X)Roedderite/(X/l -Xh1bite where X is mole fraction of Na, seem to reversely correlate 

with petrologic type (Fig. 6); the coefficients are 0.142 for EH5, 0.021-0.072 for EH4 
and 0.003-0.009 for EH3. Such a correlation may reflect a formation temperature of 
roedderite and albite in these meteorites. SKINNER and LucE (1971) concluded that 
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temperatures for niningerite formation in Abee (EH5) and Indarch (EH4) were 

700-800°C and 500-600°C, respectively. However, the other EH3-4 chondrites in Fig. 

6 have too low-Fe niningerite (EHLERS and EL GoRESY, 1988) to be applied to the 
geothermometer by SKINNER and LUCE ( 1971). However, pairs of roedderite and albite 

in petrologic type 3 may have formed at a temperature lower that those in higher types. 

The coefficient for Y-793592 is 0.036 which is within the range of EH4, suggesting that 

a formation temperature of roedderite-albite pair in Y-793592 is lower than that in 

EH5 and higher than EH3. Such a low temperature for Y-793592 may reflect the final 

cooling stage, where equilibration took place between the metallic phases. 
4.3.2. Daubreelite 

Daubreelites in Y-793592 and ALH-78113 have low Zn content ( < 0.3%) (Fig. 7). 

Daubreelites in non-Antarctic aubrites are also poor in Zn (WATTERS and PRINZ, 1979; 

this study). On the other hand, daubreelites in EH chondrites are enriched in Zn 
(0.7-8. 1 %) (KEIL, 1968a; EL GORESY et al. , 1988; LIN, 1991; KIMURA, unpublished data), 

except for South Oman (E4) having Zn-poor daubreelite (0.0-0.3 wt%). However, South 

Oman is an unusual enstatite chondrite, which has K-feldspar instead of K-bearing 
sulfide (KIMURA and EL GoRESY, 1988). Such an anomalous nature of South Oman is 

also reflected in the unusual rare gas compositions (CRABB and ANDERS, 1981). 

Daubreelites in EL6 chondrites are also depleted in Zn (KEIL, 1968b ), like those in 
aubrites. 

Zinc contents of daubreelites in aubrite and EL6 are evidently lower than those in 
EH3-5 (Fig. 8). Aubrite and EL6 are also poor in bulk Zn content. Zinc prefers sphalerite 

to the other minerals in enstatite meteorites. However, sphalerite is not encountered in 
aubrites, and Zn is detected only in daubreelites in aubrites studied here. Therefore, 

the low-Zn contents of daubreelites in aubrites reflect low bulk Zn contents in aubrites. 
WOLF et al. ( 1983) reported the depletion of volatile elements such as Zn and In in 

aubrite, and suggested that a parent body of aubrite is depleted in volatile elements. 
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( LIN, 1991; KIMURA , unpublished data) . Note that daubreelites in aubrites and EL6 
chondrites are extremely poor in Zn, in comparison with those in EH chondrites. 

4.3.3. Djerfisherite 

1 99 

We found djerfisherite in Y-793592, ALH-78113, Aubres, Cumberland Falls, Khor 

Temiki and Pefia Blanca Spring. In addition, EL GoRESY et al. (1971 )  reported djerfisherite 

from the Bishopville aubrite. Thus, djerfisherite is a common accessory mineral in 

aubrites. Djerfisherites in aubrites are characterized by low contents of Cu (0.9-2.3 wt%) 

and Na ( < 0.7%), and high content of Ni (0.4-5.5%) (Table 4). On the other hand, 

djerfisherites in EH3 chondrites are enriched in Cu ( 1 .3-5.0 wto/o) and Na (0.4- 1 .9%), 

whereas poor in Ni (0.4-3.1 %) (KIMURA and EL GORESY, 1 988; LIN, 1 99 1 ). Those in 

EH4-5 are poor in Na ( < 0.2 wt%), but rich in Cu (2.4-7.4%) (Fig. 9). Thus, djerfisherite 
in aubrite is distinguished from those in EH3-5 by its chemical composition. 

FUCHS (1966) assigned the chemical formula KiNa, Cu)(Fe, Ni) 1 2S 1 4 to a 
djerfisherite from lndarch (EH4). Later CzAMANSKE et al. (1979) determined the crystal 

structure of a terrestrial djerfisherite and the formula as K6Na 1 (Fe, Cu, Ni)i 4S2 6Cl 1 . 

Average chemical formulae of meteoritic djerfisherites are {K, Na)6(Fe, Cu, Ni, Co )i4 

S26Cl1 in aubrites and (K, Na)6{Fe, Cu, Ni, Co)i 5S26Cl 1 in EH chondrites. 
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and Khor Temiki after BISWAS et al. ( 1980) and WOLF et al. ( 1983). 

4.3.4. Na-Cr-sulfide 

Minerals A and B occur in Bustee as well as Y-793592, although the total is higher 

in Bustee (Table 4), probably due to small grain size of Na-Cr-sulfides in Y-793592. 

From semi-quantitative analyses, minerals A and B in ALH-77295 (EH3), Qingzhen 

(EH3) and Bustee have about 6-7 and 11-15 wt_% oxygen, probably as H20 or OH. 

Thus, these minerals may have formed by aqueous alteration, probably during terrestrial 

weathering. High content of oxygen in mineral B is consistent with lower total weight 

percents (71-79 wt%) than mineral A (88-93%). 
Minerals A and B were also reported from Pena Blanca Spring, Norton County 

and Pesjanoe aubrites (RAMDOHR, 1973). The other two Na-Cr-sulfides, caswellsilverite 

and schollhornite, have been reported in Norton County (OKADA and KEIL, 1982; 
OKADA et al., 1985). Atomic Cr/S ratios of caswellsilverite, schollhornite, and minerals 

A and B are nearly 1/2. However, alkali is depleted in schollhornite (Na0 . 3CrS2), and 

especially in minerals A ([Na, KJ 0 . 0 7Cr0 .99S2 on average) and B ([Na, KJ0 . 1 2Cr1 .00S2), 

in comparison to caswellsilverite (NaCrS2) .  K is always contained in minerals A and 
B in Y-793592 and Bustee (Na/Na + K ratio 0. 1 8-0.87), whereas schollhornite has no 

detectable K. Thus, minerals A and B may be different phases from schollhornite 
(EL GoRESY et al., 1988). At any rate, Na-Cr-sulfide had primarily occurred in many 

aubrites. 

4.4. Genetic relationships between aubrite and enstatite chondrites 

Djerfisherite, Na-Cr-sulfide and roedderite are also found in almost all EH3-5 
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20 1 

chondrites (Table 1 ) . However, aubrites have no niningerite and sphalerite that are 

common accessory minerals in EH3-5. In addition, the compositions of daubreelite, 

djerfisherite and roedderite in aubrites are evidently different from those in EH3-5. 

Thus, these minerals were not xenocrystic fragments from EH chondrite. 

Djerfisherite, Na-Cr-sulfide, roedderite and caswellsilverite have not been reported 

in EL chondrites, except for djerfisherite in MAC88136, EL3 (LIN et al., 1 99 1 )  and 

mineral A in Khaipur, EL6 (RAMDOHR, 1 973). Alkali elements may have formed only 

feldspar in EL6 chondrites. Thus, the mineral assemblages of aubrite and EL are not 

the same. IKEDA ( 1 989) proposed that these alkali-bearing minerals in EH3 were formed 

by fractionation of Al203 relative to alkali elements during condensation in the nebula. 

From this model, these minerals may be expected to be not encountered in EL6 which 

have high Al/Al + Na + K  ratio (0.59 on average) after KALLEMEYN and WASSON ( 1986). 

On the other hand, aubrites have lower ratio (0.46 on average) after NTAFLOS and 

KOEBERL ( 1 992). The precursor material of aubrites may also have suffered the 

fractionation of Al203 in the nebula like EH chondrites, or in a parent body by a 

magmatic process. Excess alkali elements relative to Al203 should have formed 

djerfisherite, Na-Cr-sulfide and roedderite in aubrites. The different mineral assemblage 
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in aubrites observed here, may reflect a precursor material different from EL6, being 

consistent with BRETT and KEIL (1986) and KEIL (1989). 
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