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Abstract: We studied the remanent magnetization of a sedimentary core PC, (0..2
m length) drilled during the MR33-K*/ cruise of JAMSTEC in the western Arctic

Ocean. Discrete specimens and u-channel samples were used in the study. In the

discrete specimens, the change of remanent magnetization with depth show many clear

polarity reversals in both inclination and declination. Furthermore, most reversals in

discrete specimens correlated well with those in the u-channel samples.

Core PC, is characterized by distinct alternations of dark gray and brownish

layers. Through comparison of lithostratigraphic cycles with glacial-interglacial

cycles (referring to R.L. Phillips and A. Grantz, Geol. Soc. Am. Bull., +*3, ++*+,
+331), sedimentary cycles of core PC, are correlated to marine isotope stages up to

MIS-2. This indicates that polarity reversals of remanent magnetization in core PC,
are geomagnetic excursions in the Brunhes epoch. Comparison with the previously

known geomagnetic excursions shows that the polarity reversals are clear and have

long duration in core PC,. This feature may be related to characteristic geomagnet-

ism around the western Arctic Ocean.

key words: magnetization of sedimentary core, polarity reversals, western Arctic

Ocean, glacial-interglacial cycles

+. Introduction

During cruise MR33-K*/ of the vessel Mirai of the Japan Agency for Marine-

Earth Science and Technology (JAMSTEC), a piston core, PC,, 0..2m in length was

recovered from the Northwind Ridge of the Chukchi Sea, in the western Arctic Ocean

(1.�,/�N, +0*�*,�W, water depth /-*m, Fig. +).
The Arctic Ocean is a key component of the Earth’s climate system; however, the
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paleoceanographic studies of the Arctic are still inadequate and the results are contro-

versial (Itaki et al., ,**-). Core PC, is expected to elucidate the paleoceanographic

and paleoclimate record of the past few hundred thousand years around the western

Arctic Ocean (Itaki, in prep).

Remanent magnetization of a marine/lake sediment is preserved over a long period

as a “fossil” of the geomagnetic field, so that the sedimentary sequence is useful to study

the history of polarity change and/or the secular variation of the geomagnetic field.

The paleomagnetism of sediments at high latitude, especially in the Antarctic (Sakai et

al., +332) and the Arctic Ocean is important for the understanding of geomagnetism.

In the Arctic Ocean, paleomagnetic studies of sedimentary cores have been limited, and

most of them (Clark, +31*; Lovlie et al., +320; Witte and Kent, +322; Schneider et al.,
+330; etc.) have been done in the eastern Arctic Ocean. Core PC, drilled in the

Chukchi Sea may be valuable to study the poorly known paleomagnetism of the western

Arctic Ocean.

In this paper, the paleomagnetic study of core PC, examines geomagnetic excur-

sions during the Brunhes epoch. Geomagnetic excursions during the Brunhes epoch

have been reported mostly from low and middle latitudes. Recently, Lund et al.

(,**+) showed +. excursions in the Brunhes epoch from ODP Leg+1, cores in the

western North Atlantic Ocean. Based on investigation of these excursions and former

studies, they suggested that an “excursional state” of the Earth’s magnetic field may

have both a strongly multipolar spatial pattern of variability and a complicated temporal

pattern of variability. Also, they emphasize the necessity of other global records to

understand the exact space-time pattern of geomagnetic field behavior during ex-

Fig. +. Sampling location of core PC, at Northwind Ridge in the Chukchi Sea during cruise MR33-
K*/ of JAMSTEC.
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cursional states and the relationships among individual excursions worldwide. It is

important to find areas (especially at high latitude) where reliable plural geomagnetic

excursions can be reconstructed, and to investigate them from a sedimentary core in

detail.

We studied the remanent magnetization of the sedimentary sequence in core PC,.
On discrete specimens and u-channel samples, the polarity change of the remanent

magnetization is investigated.

,. Sample description and experiments

The PC, piston core 0..2m in length is characterized by distinct alternations of

dark gray and brownish layers (Fig. ,). The dark layer is composed of laminated silty

clay, the brownish layer of bioturbated gravel-bearing sandy mud.

The core was cut into sub-cores *.1 to +.*m in length. In the magnetic study, we

used discrete specimens collected in 1 cc cubic plastic cases at intervals of , cm, and
u-channel samples. Figure - illustrates the sampling. A total of -,0 discrete speci-

mens and seven u-channel samples were utilized in the study.

The remanent magnetization was measured by a ,G-10*R cryogenic magnetometer

of Toyama University. The u-channel sample was measured at , cm intervals. The

Fig. ,. Lithology of core PC, and its correlation to the standard litho-cycle of Northwind Ridge

proposed by Phillips and Grantz (+331).
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magnetometer has an automatic alternating field (af) demagnetization system which is

used for af demagnetization experiments of discrete specimens and u-channel samples.

Magnetic susceptibility was studied by a KLY--S susceptibility measurement

system. By this system, the anisotropy of magnetic susceptibility (AMS) of discrete

specimens and also the thermal dependence of susceptibility was measured. A heating

experiment was done in an Ar atmosphere. The results are shown in Section ..

-. Results of the experiment on remanent magnetization

-.+. Alternating field (af) demagnetization

The intensity of remanent magnetization in most of the discrete specimens ranged

from +*�/ to +*�1 Am,/kg. First, an af demagnetization experiment was conducted on

pilot discrete specimens selected at /* cm intervals from the core. Demagnetization

was done stepwise up to 2*�2/mT increment of /mT steps.

Examples of af demagnetization are shown in Fig. ., by Schmidt’s equal area

projection net and Zijderveld (+301) diagrams. We can identify, in each Zijderveld

diagram, the straight line crossing the plots to the origin suggesting stable remanent

magnetization.

As secondary magnetization in most pilot specimens can be eliminated by a

demagnetization field less than ,*mT, the residual specimens are demagnetized in 0
steps up to .*mT. By examining the demagnetization results through fitting analysis,

the characteristic direction of magnetization was selected. When a reliable magnetiza-

tion vector was not obtained, we did not use the data in further discussion.

Af demagnetization on u-channel samples was conducted stepwise up to /*mT at

the 0 af level. In Fig. ., examples of results are shown. Similar to discrete specimens,

in most of the measured points, the secondary magnetization was eliminated by

demagnetization treatment.

-.,. Variation of the remanent magnetization vector of core PC, with depth

In Fig. /, variations of declination, inclination and intensity of remanent magneti-

zation with depth in discrete specimens are shown. The direction of the magnetization

is the characteristic direction obtained from the fitting analysis of the stepwise

demagnetization data of each specimen. The intensity of the magnetization is that of

the natural remanent magnetization (NRM). Several clear and well correlated polar-

ity changes are identified in both inclination and declination. Stable inclination in the

core is almost concordant with the inclination calculated from the axial centric geomag-

netic dipole.

Fig. -. Sampling.
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The changes of inclination in u-channel samples (after ,*mT demagnetization)

with depth were compared with those of discrete specimens (Fig. 0). On the whole, we

can identify concordant polarity changes among these data. In the polarity columns,

black (normal polarity) and white (reversed polarity) indicate our interpretation of the

assigned polarities from the discrete specimens. Reversed polarity is inferred when the

following criteria are satisfied.

(+) The characteristic direction (both inclination and declination) of relevant speci-

mens is antipodal to the direction of the specimens around them.

(,) The reversed magnetization occurs in than two adjacent specimens.

At several depths of the core, the magnetization direction of discrete specimens is

di#erent from the magnetization of the u-channel sample. We consider the following

reasons for this di#erence.
(-) The u-channel measurement is conducted on successive cores, so that each point

datum of the core consists of integrated magnetization of sediment over a rather

broad area (over ca. +* cm).

(.) U-channel samples, in some cases, might include disturbed or cracked areas in the

Fig. .. Af demagnetization results are represented in Schmidt’s net and Zijderveld (+301)
diagram. Examples of discrete specimens, PC,-,-++, PC,---++, PC,-.--, PC,-/--+ and

examples at two measured points in the u-channel sample are shown.
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inner region.

(/) Generally, the demagnetization property (coercive force distribution) is not

uniform in the core, so that the demagnetized data set for the u-channel in a certain

af field may be di#erent from the characteristic direction (it is not easy to obtain the

characteristic magnetization at each data point in the u-channel by the fitting analysis

of stepwise demagnetization data).

Fig. /. Variations of declination, inclination and

intensity of remanent magnetization with

depth in discrete specimens.
Fig. 0. Variation of inclination in u-channel

samples (after ,*mT demagnetization)

and inclination of characteristic magne-

tization of discrete specimens with

depth. At right, assigned polarity

reversals are shown by the white

column (reversed polarity) and black

column (normal polarity).
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In this study, we use data from discrete specimens mainly for the discussion of

magnetic polarity. U-channel data were used to examine the mis-orientation of discrete

specimens, and broken or twisted areas in the core.

.. Rock magnetic experiments

The areas of reversed polarity magnetization are clear and have long range in the

core. Before discussing the polarities of magnetization in relation to geomagnetism, we

conducted the several rockmagnetic experiments.

..+. Acquisition of thermal remanent magnetization

The reversed polarity specimens were submitted to an artificial thermal remanent

magnetization (TRM) acquisition experiment. The purpose is to examine the possibil-

ity that the reversed polarity in core PC, is caused by some mechanism such as

self-reversal of the magnetic mineral.

Specimens in cube cases after +**mT af demagnetization were prepared for the

experiment. The block sediments were carefully removed from the cube cases, then

coated and firmed with a non-magnetic ceramic bond. In the TRM acquisition

experiment, these specimens were set in a silica glass tube and heated by an electric

furnace. The experiment was done in an Ar atmosphere in a magnetic shielded space.

During the cooling process, an artificial magnetic field of /* mT was imposed, and the

acquired partial TRM (pTRM) was measured. The above process was conducted in

several temperature ranges up to 0**�C.
Figure 1 shows the intensity distribution of pTRM. All of the pTRMs point to the

imposed artificial magnetic field. Generally, the self-reversal occurs at the blocking

temperature of ,**�-**�C (Uyeda, +3/2). Around this temperature range, we could

not identify either a directional change or an abrupt intensity change of magnetization.

Similar results were obtained from the eight specimens with reversed polarity magneti-

zation. Figure 1 shows that the pTRM was mostly acquired at /**�0**�C, which
suggests the possibility of secondary formed magnetite during heating experiment.

However, pTRM acquired below .**�C is weak, so we consider that secondary magnet-

ite if formed during heating may have not seriously contributed to the pTRM around

Fig. 1. Intensity distribution of acquired pTRM

in several temperature ranges. Specimen

PC,-,-+. (*..0m depth) with reversed

polarity after +**mT af demagnetization

was used in the experiment.
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,**�-**�C. That is, if the specimens include hemoilmenite, its acquired reversed

magnetization around ,**�-**�C may be larger than the pTRM of secondary formed

magnetite. As the abnormal change (direction, intensity) of magnetization was not

identified, we consider that a self-reversing magnetic mineral such as hemoilmenite is

probably not included in the PC, core sediment.

..,. Anisotropy of magnetic susceptibility

The anisotropy of magnetic susceptibility (AMS) was studied on the discrete

specimens. The shape anisotropy represented by the Flinn diagram (Flinn, +30,) in
Fig. 2 indicates the dominant of foliation anisotropy. The AMS directions in

Schmidt’s projection net (Fig. 3) show that the minimum axes concentrate in the

vertical direction and the other axes are scattered in the horizontal plane. Such AMS

properties indicate that the sedimentation progressed in a quiet condition at the PC, site,
and that the sediment layer was not inclined much.

..-. Other rock magnetic properties

We studied, the magnetic susceptibility (c), the anhysteretic remanent magnetiza-

tion (ARM), the saturation isothermal remanent magnetization (SIRM), the S-ratio,

the ratio of ARM susceptibility and susceptibility (ca/c), the median destructive af field

of ARM (ARM-MDF) and the thermal dependence of susceptibility.

ARM was acquired in an alternating magnetic field of *.+T and a direct field of
*.*/mT and, in the af demagnetization experiment, ARM-MDF was studied. SIRM

was imparted at a direct magnetic field of +.*T. These magnetic parameters should

reflect the concentration, grain size and mineralogy of the magnetic minerals in the

sediments (Robinson, +320; Bloemendal et al., +322). Also, IRM-*.+T was imparted
at *.+T in the opposite direction to SIRM, and the S-ratio (-IRM-*.+T/SIRM) was used

Fig. 2. The shape anisotropy of AMS is shown in the Flinn diagram.
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Fig. 3. Directional distribution of principal axes (Maximum, Intermediate : Medium, Minimum)

of AMS ellipsoid for discrete specimens is represented by the Schmidt’s projection net.

Remanent magnetization of core PC, from western Arctic Ocean 75

.� .. 

� .. 
+ 

• +. ++ 

�rJ 
.. ".it' 
''if/',' 

+ • 

···:·4. 
I ,,• '!' -.• 

• Maximum 

+ Medium 

• Minimum 



to study the coercive force of the magnetic mineral.

The study of susceptibility in a high temperature range (up to 1**�C) was

conducted on several samples by the KLY--S system. The results in Fig. +* suggest
that the PC, core sediment may include magnetite, and possibly iron sulphide mineral.

In Fig. ++, the variations of the rock magnetic properties of the sediment with
depth are shown. The susceptibility, ARM and SIRM show concordant variation with

depth, which suggests that the variation of these parameters is mainly caused by

variation of magnetic mineral content in the sediment. We can identify a large

fluctuation of rock magnetic parameters around the depth from ,./m to ,.*m in the

core. The susceptibility, ARM and SIRM considerably decreased in this area, where

chemical analysis (Sugisaki and Sakamoto, in prep.) also shows abrupt decrease of the

iron component. In the following, this area from ,./m to ,.*m is named area-A.

Sedimentological analysis indicates that area-A was deposited in the interglacial

period where the biogenic component was abundant compared with the surrounding

core region. In the upper region of the core from area-A, the rock magnetic parame-

ters (and also the chemical parameter) show more fluctuation with larger amplitude

than those in the lower region. This suggests that the sedimentary condition around

Northwind Ridge in the Chukchi Sea may have changed since area-A was deposited.

In this interglacial period around area-A, increase of biogenic components caused

the content of magnetic mineral to decrease in the sediment (dilution e#ect), which may
explain the decrease of the susceptibility, ARM and SIRM. During the most active

interglacial period, there may have been an open sea without sea ice around Northwind

Ridge, and decrease of terrigenous grains transported by ice-rafted debris (IRD). We

suppose that the kind and/or size of magnetic minerals in the sediment may have

Fig. +*. Change of susceptibility in the high temperature range (up to 1**�C).
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changed by the decrease of IRD particles in the active interglacial period (similar to the

study on Lake Baikal sediment, Sakai et al., ,***).
Generally, sizes of IRD particles are larger than those of other particles. Increase

of ARM-MDF and decrease of the S-ratio suggest that there is a concentration of

magnetic particles with high coercive force around area-A, which may explain the

possible decrease of large IRD particles in the most active interglacial period (particu-

larly when the magnetic mineral was magnetite). However, the decrease of ca/c

around area-A indicates a concentration of large magnetic particles, which is inconsis-

tent with the above interpretation. There may have been a change of the kind of

magnetic mineral around area-A. For further discussion of the abrupt change of rock

magnetic properties around area-A, more magnetic study with chemical analysis is

necessary.

We attempted to examine the relation between the above rock magnetic properties

and the appearance of geomagnetic excursions. A clear relation between them could

not be identified. Though we cannot deny the unknown rock magnetic process to

induce the reversal of remanent magnetization, clear reversals of remanent magnetiza-

tion, obtained through demagnetization analysis, identified through a fairly long succes-

Fig. ++. Variation of magnetic properties with depth. Magnetic susceptibility (c), ARM, SIRM,

S-ratio, ca /c, median demagnetizing field of ARM (ARM-MDF) are shown.
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sive length of the core suggests that reversed polarity magnetizations in core PC, may
represent geomagnetic polarity reversals. In the following, the age of core PC,, and
the correlation of reversed polarity magnetizations with previously known geomagnetic

polarity reversals, are discussed.

/. Sedimentation cycles and polarities of remanent magnetization

/.+. Sedimentation cycle of core PC,
As cited in Section ,, the lithology of core PC, is characterized by sedimentary

cycles of distinct alternations of dark and brownish layers.

Generally, it is di$cult to determine depositional ages of cores in the Arctic Ocean.
The reason is that the number of foraminiferal tests (composed of CaCO-) in sediments

during the glacial periods is too small, and also, +.C dating or oxygen isotope analysis

from microfossils is di$cult. However, a rough estimate of the age can be inferred

from cyclic changes of sediment facies. In core PC,, alternations of laminated gray
mud and brown sandy mud are clearly recorded which may be correlated with

glacial-interglacial cycles during the Pleistocene.

During interglacial periods in the Arctic Ocean, sandy grains and gravels were

supplied to the sea floor as IRD. The IRD grains were transported from the coastal

region with active movement of the sea ice, and then released in to the sea when the ice

melted in summer. During glacial periods, IRD deposition was strongly limited due to

slow movement and little melting of the thick developed permanent sea-ice under the

cold environment. In addition, the sediment color also suggests glacial-interglacial

cycles reflecting the bottom environments. That is, massive or bioturbated brownish

layers were formed under the well oxygenated condition during interglacial periods; on

the other hand, laminated dark gray layers indicate the poor oxygen bottom condition

during glacial periods. Therefore, alternations of laminated gray mud and brown

sandy mud are closely related to the glacial-interglacial cycles.

Phillips and Grantz (+331) have shown that lithostratigraphic cycles of several
sediment cores recovered from Northwind Ridge can be correlated among core sites,

and also correlated with the glacial-interglacial cycles. Because the drilling site is close

to their examination area, the correlation of litho-cycles can be applied to that of core

PC,. In Fig. ,, litho-cycle + corresponds to the marine-isotope stage (MIS)-+, i.e.

Holocene, and litho-cycles , and - are coincident with MIS-, to MIS-/ and MIS-0 to
MIS-1, respectively. Two laminated gray mud layers recognized in about +.,m and ,.2
to /m of core PC, are probably correlated with the upper part of litho-cycle , (MIS-,
to MIS-.) and the upper part of litho-cycle - (MIS-0), respectively. The depth around

/./�/.1m is composed of laminated mud containing some gravel. The correlation of

this part requires further examination, however, we may correlate roughly the depth ca.

/.1m with the middle or base of MIS-1 (ca. ,/* ka). Then, the age of core bottom is

estimated to be ,/*�-** ka (MIS-2).

/.,. Geomagnetic polarity of core PC,
Through the comparison of lithostratigraphic analyses with glacial-interglacial

cycles, we estimate that sedimentary cycles of the core are correlated to marine isotope
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stages up to MIS-2. The paleomagnetic age of PC, is in the Brunhes geomagnetic

normal polarity epoch. In Fig. +,, inclination change and assigned polarity reversals

on core PC, are shown with the result of lithostratigraphic analysis. There have been

several paleomagnetic studies reporting geomagnetic excursions (events) during the few

hundred thousand years in the Brunhes epoch. In this figure, the excursions found in

the eastern Arctic Ocean and surrounding areas (Greenland Sea, Iceland Sea) are shown

(Nowaczyk and Baumann, +33,; Nowaczyk and Antonow, +331; Nowaczyk and

Frederichs, +333).
Though age control is not adequate, we attempted correlation with geomagnetic

excursions around the main polarity reversal areas (a, b, c, d, e) of core PC, in Fig. +,.
Reversal area-a found in the upper part of litho-cycle , may be correlated to the

Mono Lake and Lashamp geomagnetic excursions. Reversal area-c and area-d in the

lower part of litho-cycle , (MIS-/) may be correlated to the Fram strait excursion and

Blake excursion, respectively. Around reversal area-b, correlation to the Norwegian/

Greenland excursion is considerable; however, the estimated age of area-b from the

Fig. +,. Inclination change and assigned polarity reversals of the core PC, with depth are shown

with the result of lithostratigraphic analysis. At right, previously reported geomagnetic

excursions during the last few hundred thousand years are shown. +: Nowaczyk and

Antonow (+331), ,: Nowaczyk and Baumann (+33,), -: Nowaczyk and Frederichs (+333).
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lithocycle study (lower than MIS-.) is not concordant with the excursion age, so that

more examination is necessary. Reversal areas e, f and g are found in the laminated

mud layer from ,.2 to /m (MIS-0). Area-f and area-g probably correlated with the

Ba$n Bay and Jamaica excursions, respectively. The correlation of reversal area-e

needs further examination. The Fram Strait/Pringle Falls excursion is the only

reported excursion around ,**�,/* ka in the Arctic area; therefore, it may be correlated

to reversal area-h though it consists of three reversal parts.

The correlation in Fig. +, is not exact; however, most of the polarity excursions

formerly found around the Antarctic area can be assigned to reversals of magnetization

in core PC,. Paleomagnetic excursions in the Brunhes epoch are generally discussed

based on reversals (or intermediate state polarity) of inclination data only; therefore,

polarity data of PC, utilizing both inclination and declination are valuable.

Clear polarity reversed area of core PC, in Fig. +, have long duration compared

with formerly reported excursions in the Brunhes epoch. Another possible interpreta-

tion is that the long duration of reversed polarity is an apparent period caused by the

high sedimentation rate during the geomagnetic excursion. However, the sedimenta-

tion condition to account for the higher sedimentation rate during the reversed polarity

seems to be fairly di$cult. Therefore, we conclude that the long area of geomagnetic

polarity reversal is caused by a long duration of excursion.

Referring to the suggestion of Lund et al. (,**+) that the geomagnetic excursion

state may have a strongly multipolar spatial pattern of variability, we consider that the

many clear geomagnetic excursions in core PC, may be associated with the character-

istic geomagnetic field (the high activity non-dipole field) around the area of this study.

To advance this study, we are planning to do further dating studies by methods such as

microfossils, +*Be, and relative paleointensity of the geomagnetic field.

0. Conclusions

During the MR33-K*/ cruise of JAMSTEC, a piston core PC, 0..2m in length

was obtained from Northwind Ridge of the Chukchi Sea, western Arctic Ocean.

The remanent magnetization of sediment shows clear and well correlated reversals

in inclination and declination. Furthermore, most of the polarity reversals identified in

the discrete specimens are concordant with reversals found in u-channel samples.

Though we cannot deny the possibility of an unknown rockmagnetic process inducing

the reversal of remanent magnetization, clear reversals of magnetization examined by af

demagnetization analysis, in the fairly long successive range of the core indicates that

the reversed magnetizations in core PC, may be related to past geomagnetic polarity

reversals.

Sediments of core PC, are characterized by three distinct alternations of dark and

brownish layers. Based on the comparison of lithostratigraphic cycles with glacial-

interglacial cycles, the bottom of core PC, might be correlated to the marine isotope

stage of MIS-2 (ca. ,/*�-** ka). When comparing with formerly known geomagnetic

polarity records over several hundred thousand years, we find that core PC, includes

many clear geomagnetic excursions with long duration. Though further dating studies

are necessary to determine the age of the core, the many clear observed excursions in
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core PC, are related to characteristic geomagnetic features around the western Arctic
region during the past few hundred thousand years.
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