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Abstract: For the purpose of calibration of the superconducting gravimeter model

TT1* #*+0 at Syowa Station, Antarctica, we carried out parallel observations with the

absolute gravimeter FG/ #,*- from December ,3, ,*** to January ,/, ,**+. During

the FG/ measurements, the laser stability was sometimes not good and this caused

irregular data. We carefully examined the relation between laser stability and gravity

values, and took it into account for the removal of abnormal data. We applied linear

regression to the selected SG and FG/ data set, and obtained the value of�/2.+02
mGal/V to an accuracy of *.+*� for the scale factor of TT1* #*+0. The di#erence of

the obtained scale factor from the previous value of�/1.30/ mGal/V is about *.-/�.
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+. Introduction

Since superconducting gravimeters (hereafter abbreviated as SGs) have high sensi-

tivity and long-term stability, SG observations have significant importance for studies of

earth tides, ocean tides, earth rotation, free core nutation, and various other disciplines.

In order to utilize SG data for these geophysical studies, precise determination of the

scale factor, which transforms the SG output voltage signal to gravity acceleration, is

important. Theoretical solid earth models are considered so accurate that, at present,

the discrepancies of observed gravity from those models are generated by other

phenomena, e.g., ocean loading or earth’s inelasticity. Because solid earth tide ac-

counts for most of the tidal signal and the rest is a few percent at most, precise

determination of the scale factor is necessary to study these phenomena accurately

(Baker and Bos, ,**+). The Global Geodynamics Project (GGP; see Crossley et al.,

+333) recommends periodic calibration with an accuracy of better than *.+�.

There are two principal methods for calibration of the SG. The first method, so

called absolute calibrations, involve applying artificial acceleration to the gravimeter

using, for instance, a vertically-oscillating platform (Richter et al., +33/). However,

this method requires a special instrument and it is practically impossible to conduct it in

Syowa Station.

The second method, so called relative calibrations, is performed by parallel obser-
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vation of the SG and a reference, i.e., an absolute gravimeter or a “calibrated” relative

gravimeter. The scale factor can be obtained by comparing the gravity signals mea-

sured by the SG with those by the reference. Due to error propagation, the overall

accuracy of calibration is limited by the accuracy of the reference; the accuracy of the

standard FG/ absolute gravimeter is within *.+� (Francis, +331). Moreover, absolute

gravity measurements give us useful information on the long-term drift of the SG

and/or the real gravity change at the observation point.

The SG model TT1* #*+0 (hereafter abbreviated as TT1* #*+0) observation at
Syowa Station has been in use since March, +33-. Calibration of the TT1* #*+0 has
been carried out twice so far. The first calibration was performed using one year

registration of LaCoste&Romberg gravimeter D1-, and the value of�/1.30/ mGal/V

was obtained (Kanao and Sato, +33/; Sato et al., +33/). The second calibration was

performed by parallel observation with the absolute gravimeter FG/ (Aoyama et al.,

+331). However, due to instrumental troubles (for details, see Yamamoto (+330)), a
reliable scale factor was not obtained. Hence the value from the first calibration has

been used for the scale factor of TT1* #*+0 up to now, even though the accuracy is not
satisfactory.

During the .,nd Japanese Antarctic Research Expedition (JARE-.,), absolute
gravity (hereafter abbreviated as AG) measurements have been carried out using the

FG/ #,*- in the same gravity room, and we obtained parallel observation data for both
the SG and the AG, of enough duration and quality to determine the precise scale factor.

In this paper, we report the determination of the scale factor of the TT1* #*+0 using the
parallel observation data and discuss some related problems which have to be solved for

future measurements.

,. Observation and data processing

,.+. Absolute gravity measurements

From December ,3, ,*** to January ,/, ,**+, AG measurement using the FG/
#,*- was carried out in the gravity room of Syowa Station (Kimura, ,**,), at the
IAGBN (International Absolute Gravity Basestation Network) category A #*.+1
stations (Boedecker and Fritzer, +320). We obtained more than +***** single mea-
surements (drops) for the AG data.

During the AG measurement, the iodine stabilized He-Ne laser frequently became

unstable and the gravity values became also unstable and scattered consequently. The

real-time data collecting software of FG/ has an option which allows the system to

detect the locked laser peak when the drop is initiated. This option requires a table of

the nominal laser output voltages for each laser peak. The software of the FG/ detects
the laser peaks to be locked by comparing measured laser voltage during a drop with the

voltages in the table stored in the software, and the gravity values are calculated using

the corresponding wavelengths of the locked laser peaks. Thus, if the laser output

voltages are unstable, the laser peak detection may fail, and false wavelengths will be

used for calculation of the gravity. Note that a false laser lock detection between one

adjacent line pair causes about a ,1 mGal gravity di#erence.
To check the false detection of the laser peaks, we plotted the output voltages of the
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iodine laser and the corresponding gravity values with respect to the laser peaks which

were automatically detected. Figure + shows 0-0* data obtained from January 0 to
January 1, ,**+, as an example. In Fig. +a, pluses(�), crosses(�), squares(�) and
stars(�) show gravity values which were calculated by assuming the corresponding
wavelengths of ID, IE, IF and IG peaks, respectively. Note that the operation system

of the FG/ only uses laser peaks either between ID and IG or between IH and IJ. The

solid circles in Fig. +b indicate laser output voltages and the four level lines indicate the
nominal laser output voltages at the ID, IE, IF and IG peaks. These voltages were

measured and recorded in the software table. The gravity values look stable only when

the laser outputs are around *.,.V (ID) and/or�*.*2V (IE). Therefore, we decided

to use only data which were locked on the ID and IE peaks.

The removal of the false FG/ data due to laser instability greatly reduced system-
atic errors, but there still remained some outliers due to unspecified reasons. To

remove those data, we took the following two steps: first remove data over �/** mGal

from the median value; second remove data over�-** mGal from the average value of

the data which remained after the first step.

Fig. +. This figure shows 0-0* data obtained from January 0 to January 1, ,**+. (a) The FG/
gravity values. The pluses(�), crosses(�), squares(� ) and stars(� ) show gravity values

which were calculated by using the corresponding wavelengths of the ID, IE, IF and IG laser

peaks, respectively. (b) The iodine stabilized He-Ne laser output. The solid circles indicate

laser output and the four level lines indicate the laser output of ID, IE, IF and IG peaks

which were measured and recorded in the software table.
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,.,. Comparison of AG and SG data

Figure , shows a time series of the AG and the SG data (+ second sampled GGP-

+ data) from December ,3, ,*** to January +-, ,**+. During the observation period,

several maintenance procedures were taking place in the gravity observation room at the

same time. This caused noise on the observed gravity data. Especially, helium

liquefier which started on January +-, ,**+, resulted in increased noise on both the AG

and the SG data. Thus we did not employ those data though the observations

continued until January ,/, ,**+. Note that several earthquakes occurred during the

observation period, as shown in Fig. ,. We also removed data which were scattered

under the influence of those earthquakes (see Fig. ,).

For calibration of the SG scale factor with the AG data, simultaneous pairs of SG

and AG data are necessary. Before preparing the data set, the SG data were corrected

for the time lag (2.+0 s delay) of the GGP-+ filter which is an on-board anti-aliasing

low-pass filter recommended by the GGP. After pre-processing to remove the false FG/
data mentioned above, and after the time lag correction for the SG data, the SG data

which correspond in time with the AG data were picked up.

We note a step in the SG data on January /, ,**+. We separate the whole period

into two sections, namely (A) before the step and (B) after the step. We carried out

linear regression analysis for data of the (A) section, (B) section and (C) the data for

the whole period. After removing data outside of three times the standard deviation,

Fig. ,. Time series of selected AG and SG data (+ second sampled GGP-+ data) from December ,3,
,*** to January +-, ,**+. In this figure, laser instability was not considered.
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the regression analysis was repeated twice to obtain the final result. Figure - shows

selected pairs of AG and SG data throughout the whole duration.

-. Result

The scale factors calculated are summarized in Table + and plotted in Fig. .. In

the figure the current scale factor by Kanao and Sato (+33/) is also plotted.

A remarkable di#erence of the scale factor between (A) and (B) resulted from the

di#erence of the tidal amplitude (see Fig. ,). In period (A), the tidal amplitude was

small and the estimation error of the scale factor was large, and vice versa in period (B).

Fig. -. Selected pairs of AG and SG data from (A) December ,3, ,*** to January /, ,**+ (before

the step) and (B) January /, ,**+ to January +-, ,**+ (after the step). The SG step of

January /, ,**+ was corrected. The total number of data is //1.-.

Table +. The scale factor of TT1* #*+0.

Period* Scale factor (mGal/V) (�)
Number of

the data

�A�
�B�
�C�
Previous

�/142++�*4+,*

�/24,-3�*4*1/

�/24+02�*4*0+

�/1430/

�*4,+�
�*4+-�
�*4+*�
�about +�

,-*,0
-,22,
//1.-

*Period

(A) December ,3, ,***�January /, ,**+
(B) January /, ,**+�January +-, ,**+
(C) December ,3, ,***�January +-, ,**+
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Although the scale factor obtained for (A) di#ers from that for (B), we cannot find any
systematic errors in period (A) when the estimation errors are taken into consideration,

so there is no reason to remove the data for (A). Undoubtedly the increase in number

of data improves the estimation error statistically. Therefore, we concluded that the

value of�/2.+02�*.*0+ mGal/V is the most reliable value for the scale factor of TT1*
#*+0.

.. Concluding remarks

A new type of SG model CT has been installed in Syowa Station and TT1* #*+0
will soon been replaced. Prior to the instrument replacement, precise calibration of the

scale factor of TT1* #*+0 was really desired so as to utilize these +* year data most
e#ectively. We succeeded in determining improved accuracy and obtained the scale

factor of TT1* #*+0 to an accuracy of *.+*�. The obtained value is consistent with

the previously adopted scale factor by Kanao and Sato (+33/), but it is about ten times
more accurate than the previous one.

Finally, we make some suggestions for future calibration studies and/or FG/
measurements. We believe that one of the biggest error sources degrading FG/ data is
variation of the room temperature. The recommended operation temperature of the

FG/ is between +/�C and ,/�C within the variation of�,./�C . However, during our

parallel observation, the actual temperature varied from +3.0�C to ,3.*�C; this large
variation must have caused the laser instability. This should be taken into considera-

tion in future work.

Fig. .. The scale factor of TT1* #*+0 obtained in this study. The currently adopted value by

Kanao and Sato (+33/) is also plotted. Note the magnitude of the error bar reduced to

one-tenth for our measurements.
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Owing to the short summer season of Antarctica, various works and observations

tend to be concentrated in the two months December and January. FG/ observations
during winter are needed to avoid the large artificial noise that is inevitable in summer.
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