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Introduction: The long-term variation of the galactic cosmic-rays (hereafter labelled GCRs) is a long-standing question. 

Meteorites represent the best candidates to study whether such periodic variations have occurred [1]. During their travel in 

space, meteoroids are exposed to GCRs, which induces nuclear interactions producing (among others) stable (noble gases) and 

radioactive cosmogenic nuclides. Being interested in the long-term variation of the GCRs, we focus on iron meteorites because 

they typically have cosmic-ray exposure (CRE) ages in the range of a few Ma and – for some – even up to 2Ga [2]. It has been 

demonstrated previously that periodic GCR flux variations can induce peaks in CRE age histograms, which is due to the fact 

that during periods of high fluency the “apparent” time seems to run faster and vice-versa.   

Shaviv et al. (2002) [3] suggested a link exists between the occurrence of ice-age epochs and our Solar System crossing the 

spiral-arms of our galaxy, with a periodicity of ~140 million years (Ma); he proposed that such a periodicity would as well be 

identified in the CRE histogram for iron meteorites. Therefore, we wanted in this study to set up a consistent exposure age 

histogram and then search for periodic peaks, which would indicate whether periodic GCR flux variations exist or not. 

 

Materials and Methods: In this work, we studied 56 iron meteorites, mainly from group IIIAB (n = 42); we measured the He, 

Ne, and Ar isotopic concentrations by noble gas mass spectrometry at the University of Bern, following procedures described 

in [4,5]. The 10Be, 26Al, 36Cl, and 41Ca activities have been measured at the DREsden Accelerator Mass Spectrometry 

(DREAMS) facility using chemical procedures previously described in [6].  

 

Results and Discussion: The CRE ages have been calculated using the well-adopted 36Cl-36Ar dating systematic [1]. We 

corrected the data for radioactive decay on Earth, i.e., we determined the terrestrial age for each studied meteorite. To avoid 

problems with 10Be and 26Al production from inhomogeneous distribution of sulfur- and phosphorous-rich inclusions (i.e. 

troilite and schreibersite, respectively), we preferred to use the 41Ca-36Cl system to determine terrestrial ages, based on new 

Monte-Carlo calculations [7].  

The calculated CRE ages range between ~12 and ~652 Ma, which is in the expected range for iron meteorites [2,8]. In addition 

to our data, we used the data of the big Twannberg iron meteorite [9] as well as data from [1] and [10]. We were able to 

establish a consistent histogram of 68 iron meteorites. The examination of the CRE histogram revealed, after correction for 

pairing, 40 individual ejection events, without evidence for any periodic structures. This is consistent with earlier studies 

arguing that the CRE histogram do not show any periodic features (e.g. [11,12]). Nevertheless, the 36Cl-36Ar CRE ages are 

systematically lower by ~40% than the published 41K-K CRE ages (e.g. [13]); we propose that a possible explanation for such 

a difference could be an offset in the 41K-K dating system, which needs to be improved to safely conclude about whether there 

were GCR intensity periodic variations or not.        
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