Neutral atom emission coming from the direction of the high-latitude magnetopause under northward IMF

Satoshi Taguchi\(^1\)*, Keisuke Hosokawa\(^1\), Yozo Murata\(^2\), Akira Nakao\(^1\), Michael R. Collier\(^3\), Thomas E. Moore\(^3\), Natsuo Sato\(^4\) and Akira S. Yukimatu\(^4\)

\(^1\)Department of Information and Communication Engineering, University of Electro-Communications, Chofu-shi, Tokyo 182-8585
\(^2\)Sugadaira Space Radio Observatory, University of Electro-Communications, Chofu-shi, Tokyo 182-8585
\(^3\)NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
\(^4\)National Institute of Polar Research, Itabashi-ku, Tokyo 173-8515

*Corresponding author. E-mail: taguchi@ice.uec.ac.jp

(Received February 6, 2006; Accepted June 6, 2006)

Abstract: The Low Energy Neutral Atom (LENA) imager on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft in the magnetosphere can detect neutral particles coming from the direction of the magnetopause. During a period of dynamic pressure of \(\sim 6\) nPa and IMF \(B_Z\) of \(\sim 15\) nT on March 27, 2001, significant neutral atom emissions occurred in the direction of the very high-latitude magnetopause. Simultaneous observations from IMAGE/LENA and SuperDARN radar show that the LENA emission appears concurrently with the enhancement of the sunward flow of the reverse convection in the ionosphere. In a recent paper (S. Taguchi et al., Geophys. Res. Lett., 33, L03101, doi: 10.1029/2005GL025020, 2006) this type of emission has been interpreted as being produced by the fast ion flow caused by cusp reconnection through charge exchange with the Earth’s hydrogen exosphere. In other words, remote sensing using LENA imager can be applied in order to determine the stability of the reconnection site. From results of analyses of LENA emission data we show that the reconnection “spot” mapped on a sphere having a radius of 8 \(R_E\) shifts tailward by approximately 1 \(R_E\) over 10 min while fluctuating.

key words: cusp, neutral atoms, reconnection, IMF

1. Introduction

\(\text{In situ}\) spacecraft observations have established the presence of reconnection that is operative poleward of the cusp for northward interplanetary magnetic field (IMF) (e.g. Gosling et al., 1991). This cusp reconnection drives reverse convection, which consists of sunward flow in the dayside polar cap and return flow at lower latitudes. The reconnection also causes magnetosheath ions to enter such a sunward convection region. In this region, ions with higher energies appear at high latitudes, and lower energy ions arrive at somewhat lower latitudes, demonstrating reversed ion dispersion. The speed
of the fast ion flow at the high-latitude edge has been observed to be 200–400 km s\(^{-1}\) by the Polar (e.g. Fuselier et al., 2000) and the Cluster spacecraft (e.g. Phan et al., 2003).

One of the important issues about this fast flow is to understand the degree to which this flow layer exists stably during northward IMF. However, it is difficult to examine the stability of this phenomenon by in situ spacecraft observations because spacecraft usually reside in that layer for only a few minutes. Fuselier et al. (2000) proposed an interesting approach, in which the distance to the reconnection site from the location of the in situ Polar observation is estimated by proton distributions having characteristic low-energy cutoffs. In addition, the stability of the reconnection site for a few tens of minutes has been discussed. However, in order to further our understanding, considering the fact that there are large uncertainties in the method based on the proton distributions from the in situ observation, a remote-sensing approach is required.

Remote sensing using the Low Energy Neutral Atom (LENA) imager (Moore et al., 2000) on the IMAGE spacecraft can be used to understand the distribution of the ion flow in the region where significant source ions, which can produce neutral atom emissions through charge exchange with the Earth’s hydrogen exosphere, are present. Several studies using LENA have shown that significant source ions are present in either the post-shocked flow of the solar wind (Collier et al., 2001a, b), in the magnetosheath flow near the subsolar magnetopause (Collier et al., 2001a, 2005; Moore et al., 2003; Fok et al., 2003; Taguchi et al., 2004a) or the flow in the cusp indentation (Taguchi et al., 2004a, b), as well as in the outflow from the ionosphere (e.g. Moore et al., 2001; Fuselier et al., 2002; Khan et al., 2003; Wilson et al., 2003; Wilson and Moore, 2005; Nosè et al., 2005).

In addition, recent two studies with the LENA imager have shown that LENA can be also applied to understand the dynamics of the ion entry equatorward or poleward edge of the cusp (Taguchi et al., 2005, 2006). Using simultaneous observations from IMAGE and Polar, Taguchi et al. (2005) have shown that the LENA fluxes in the direction of the cusp are composed of relatively stable high latitude and flickering low latitude emissions, and that the low latitude emissions are associated with the ion entry on the equatorward edge of the cusp for southward IMF. Analyzing a significant LENA emission event during strongly northward IMF, Taguchi et al. (2006) has interpreted the LENA emission in the direction of the very high-latitude magnetopause as being due to the cusp reconnection that is operative for northward IMF.

The cusp reconnection causes magnetosheath ions to enter the magnetosphere. The fast ion flow from the reconnection site produces the neutral atom through charge exchange with the Earth’s hydrogen exosphere if it enters a region of adequate hydrogen density. The neutral atom emission is detected by the LENA imager when IMAGE is located downstream of the ion entry (Fig. 4 in Taguchi et al., 2006). Hence, enhanced neutral atom emission is observed coming from the direction of the very high-latitude magnetopause when IMF is northward.

In the present study, we extend the above study (Taguchi et al., 2006) by analyzing LENA data in detail focusing on the initial 24 min interval out of a significant LENA emission event on 27 March 2001. We show that the LENA reconnection “spot” mapped onto a sphere with a radius of 8 \(R_E\) shifts tailward by about 1 \(R_E\) over \(-10\) min while fluctuating.
2. Overview of observations on 27 March 2001

Figures 1a and 1b show the IMAGE orbit in the $X_{\text{GSM}}-Z_{\text{GSM}}$ and $X_{\text{GSM}}-Y_{\text{GSM}}$ planes for 1730–1940 UT. At 1730 UT, IMAGE was located near $(X_{\text{GSM}}, Z_{\text{GSM}}) \sim (2.7 \, R_E, 7.4 \, R_E)$ in the mid-noon sector ($Y_{\text{GSM}} \sim 0 \, R_E$). In Fig. 1a the outermost solid curve represents the magnetopause predicted by Shue et al. (1998) with the IMF B_Z of 15 nT and a dynamic pressure of 6 nPa, which are representative ACE solar wind conditions for this event. It appears that IMAGE is well inside the magnetopause.

Figure 1a also shows the radial distance of $8 \, R_E$ (dotted curve). Inside this radial distance, approximately, the exospheric neutral hydrogen densities increase sharply with the decrease in the geocentric distance, as compared to the density profiles outside this distance (Østgaard et al., 2003). Since IMAGE is inside this distance, it is expected that the neutral atom emission due to charge-exchange of ions with the Earth hydrogen exosphere can be detected from altitudes above and below the spacecraft.

During the interval of interest, the SuperDARN radar (Greenwald et al., 1995) at Saskatoon, Canada (52.16°N, 106.53°W) monitored plasma convection near the cusp in the ionosphere. Figure 2 shows several examples of the line-of-sight (LOS) velocity maps from Saskatoon radar scans for 40 min out of the above period. The field of view covers the daytime sector from $\sim 09 \, \text{MLT}$ to $\sim 15 \, \text{MLT}$, and significant backscatter signals were obtained from the ionosphere between $\sim 09 \, \text{MLT}$ and $\sim 13 \, \text{MLT}$.

Fig. 1. IMAGE orbit in the (a) $X_{\text{GSM}}-Z_{\text{GSM}}$ and (b) $X_{\text{GSM}}-Y_{\text{GSM}}$ during the interval of 1730–1940 UT, 27 March 2001. The diamond represents the location of IMAGE at 1730 UT. The dotted curve shows the radial distance of $8 \, R_E$, and the outermost solid curve represents the magnetopause predicted by Shue et al. (1998).
The green/blue color in each plot represents the existence of the sunward flow. Throughout the interval the flow is sunward near the local noon and is anti-sunward on the prenoon side, i.e., showing a reverse convection pattern, although the velocities become somewhat weak at 1848 UT (Fig. 2e). We analyzed LENA data for 1820-1844 UT during which the emission occurs continuously (shown later). This interval is before the time for Fig. 2e and immediately after the time for Fig. 2b.

Fig. 2: Line-of-sight velocity maps from Saskatoon Canada radar scans. Blue/green color means the existence of the sunward flow. The sunward flow can be seen near local noon, showing a reverse convection pattern, which is typical of northward IMF.
Figure 3. (a) ACE plasma density, (b) velocity, (c) three components of IMF in GSM, (d) dynamic pressure, (e) SYM-H index, (f) LENA spectrogram, (g) line of sight velocity for beam 5 at the SuperDARN Saskatoon radar. In Panel c 64-s averages of IMF data that were created from original 16-s averages are plotted so as to make comparison between the IMF and plasma data easier. In Panels g gray color simply represents the ground scatter.

Figure 3 shows variations of ACE solar wind, IMAGE/LENA hydrogen count rate, and LOS velocity obtained using the SuperDARN radar. Panels a–d display the solar wind parameters, which are shifted by 32 min, by relating the ACE detection of
an interplanetary shock at 1715 UT with a sudden commencement observed at 1747 UT in the H-component of the SYM index (SYM-H) (Iyemori and Rao, 1996) (Panel c). IMF B_Z (in GSM coordinates) is northward during the most of the plotted interval. Note that the solar wind convection time ~ 32 min is not constant. The convection time gets several minutes longer at the end of the interval, as is estimated from the comparison between the southward turning of IMF (Panel c) and the change of the ionospheric convection, which is shown later.

Panel f of Fig. 3 shows the LENA background-corrected hydrogen data in spectrogram format. The zero degree position in the Y-axis represents the direction of the center of the LENA spin angle sector that is the closest to the solar direction for this interval. We refer to the angle on the Y-axis as solar spin phase (SSP). The Sun signal (e.g. Moore et al., 2001; Collier et al., 2001b, 2003) representing neutral solar wind is clearly identified as a narrow green line near the zero SSP. In this study, we consider LENA emissions at angles much greater than the Sun signal, and relate the emissions to the plasma flow from the SuperDARN. Panel g shows the LOS (poleward) velocity for beam 5 of the SuperDARN Saskatoon radar in the format in which the range gate of the beam is on the Y-axis.

The LENA emission for SSP $\sim 90^\circ$, which comes primarily from the direction of the very high-latitude magnetopause, is enhanced at 1820 UT. The sunward flow (green/blue color in Panel g) in the ionosphere, which is typical of northward IMF, is enhanced upon the appearance of the LENA emission at 1820 UT. The LOS velocity enhancement at this time is roughly 400 ms$^{-1}$ (Taguchi et al., 2006).

At 1926 UT, the emission distribution drastically changes to cover a much wider angle range than the distribution during 1820–1926 UT. Immediately thereafter, anti-sunward flow appears in the ionosphere (Panel g), indicating that the LENA emission no longer exhibits the conditions for northward IMF (Panel c) after this time. This suggests that the northward IMF is associated with the emission for 1820–1926 UT.

From 1820 to 1926 UT, the LENA emission comes primarily from SSP of 90°–150°. Although the direction of the emission is relatively stable, its direction changes slightly so that the emission may shift to higher or lower SSP. Shortly after the emission begins, it spreads over a wider SSP range (from 60° to 200°) around 1830 UT. The SSP then increases during the period from ~ 1830 to ~ 1845 UT. There is no clear variation in SSP for ~ 1848 to ~ 1910 UT. During the period from 1918 to 1926 UT the emission moves to lower angles.

3. Temporal variations of LENA snapshots

Taguchi et al. (2005, 2006) have presented LENA snapshots in a format in which the hydrogen count rate for each line of sight is plotted on a sphere having a radius of $8 R_E$. Since inside this radial distance, approximately, the exospheric neutral hydrogen densities increase sharply with the decrease in the geocentric distance, as compared to the density profiles outside this distance (Østgaard et al., 2003), the choice of this sphere as a mapping surface for the emission coming from altitudes above the spacecraft (at $R \sim 7 R_E$) appears to be reasonable.

Using the Tsyganenko 96 model, Taguchi et al. (2006) have also shown that the
peak of the LENA emission on this sphere is mapped down to the sunward flow region of the reverse convection in the dayside ionosphere. This suggests that the source ions for the LENA emission are in the magnetospheric counterpart of the sunward flow of the reverse convection. This type of LENA emission has been interpreted as being due to the fast ion flow caused by cusp reconnection (Taguchi et al., 2006).

The fast ion flow from the cusp reconnection produces the neutral atom through charge exchange with the Earth’s hydrogen exosphere if it enters a region of adequate hydrogen density. The neutral atom emission is detected by the LENA imager when spacecraft is located downstream of the ion entry (Fig. 4 in Taguchi et al., 2006). In other words, LENA can monitor the ion entry caused by cusp reconnection. Note that the present analysis does not show any information on the distance between the cusp reconnection site on the magnetopause and the $2 R_E$ sphere.

Two examples of LENA snapshots (at 1828 UT and at 1838 UT) are shown in Figs. 4a and 4b, respectively. In Fig. 4a, the peak of the emission can be seen at $(X, Y, Z) = (3.1, -0.1, 7.4) R_E$ on the sphere having a radius of $8 R_E$. Ten minutes later, in Fig. 4b, the peak of the emission can be identified at $(X, Y, Z) = (2.5, -0.3, 7.6) R_E$. The

![Fig. 4. Two examples of LENA snapshots observed in the direction of the very high-latitude magnetopause. Background-corrected hydrogen count rates are plotted on the sphere having a radius of $8 R_E$. The peak of the emission is indicated with the white cross mark.](image-url)
emission appears to have shifted tailward. In these figures the width of the mapping surface is narrow around \(X_{\text{GSM}} \sim 4 \, R_E \) when compared with that for \(X_{\text{GSM}} \sim 0 \). This simply reflects that the mapping surface for the LENA field of view looking into \(X_{\text{GSM}} \sim 4 \, R_E \) is relatively close to the location of the spacecraft.

Figure 5 shows the temporal variations of the \(X_{\text{GSM}} \) position of the LENA peak emission on the \(8 \, R_E \) sphere from 1820 UT to 1844 UT. This period corresponds to the first interval of continuous significant LENA emissions during the present event (see Fig. 3f). To identify the peak emission, we first found an SSP sector (with an 8° spin angle) showing a maximum count peak in the range of \(56° \sim 154° \), and then determined the maximum count bin among 12 polar angle bins constituting this SSP sector. The location of the peak emission appears to be stable during the former half of the interval. However, in the latter half, the location moves toward a smaller \(X_{\text{GSM}} \) while fluctuating. The emission shifts tailward by approximately \(1 \, R_E \) over 10 min. Note that the signal at the sudden change in \(X_{\text{GSM}} \) (1842 UT) still has significant brightness (Panel f of Fig. 3).

4. Concluding remarks

Gosling et al. (1991) have pointed out that if reconnection is initiated at high-latitudes tailward of the site at which the magnetosheath flow becomes super-Alfvenic, the reconnection site moves tailward so that the magnetosheath flow is Alfvenic in the deHoffman-Teller frame. Even if such tailward motion occurs, the injected ions remain along similar magnetic field lines on the high-latitude magnetopause, and no significant change in the reconnection spot on the \(8 \, R_E \) sphere would occur.

Another possible cause of the tailward shift is the compression of the high-latitude magnetopause. When the high-latitude magnetopause is pushed inward, the reconnection site can also be moved inward (i.e., in the tailward direction). The injected ions can then be observed in a somewhat tailward position on the \(8 \, R_E \) sphere. In this case, the solar wind dynamic pressure would be expected to increase with the tailward motion of the reconnection spot. However, the temporal variation of the location of the reconnection spot is not similar to that of the ACE dynamic pressure (in Panel d of Fig. 3).
Taguchi et al. (2006) have suggested that, in addition to a strong northward IMF, an IMAGE location having a large Z and a relatively large solar wind density are necessary to monitor the cusp reconnection. From the noon-midnight passes for the period from March to April 2001, Taguchi et al. (2006) have found two events in addition to the present event by searching for intervals having an ACE solar wind density greater than 15 cm$^{-3}$, an ACE IMF B_Z greater than 15 nT, and an IMAGE Z_{GSM} greater than 5 R_E. Detailed examination of these two additional events will be performed in the next step. Combined analyses of these three events would help to clarify the reason for the tailward motion of the reconnection site.

Acknowledgments

This research was supported by grant-in-aid 15540427 and 18540443 in Category C under Japan Society for the Promotion of Science, and by the IMAGE Project under UPN 370–28–20 at Goddard Space Flight Center. Operation of the Saskatoon radar is supported by an NSERC Major Facilities Access Grant and a Canadian Space Agency contract. ACE solar wind data are provided by NASA/NSSDC. The authors thank D. McComas (PI of ACE plasma data), and N. Ness (PI of ACE magnetic field data). We also thank WDC for Geomagnetism, Kyoto, Japan for providing the midlatitude SYM-H index.

The editor thanks anonymous referees for their help in evaluating this paper.

References

